Analysis of Mechanical Energy Transport on Free-Falling Wedge during Water-Entry Phase

For better discussing and understanding the physical phenomena and body-fluid interaction of water-entry problem, here mechanical-energy transport (wedge, fluid, and each other) of water-entry model for free falling wedge is studied by numerical method based on free surface capturing method and Cart...

Full description

Bibliographic Details
Main Authors: Wen-Hua Wang, Yi Huang, Yan-Ying Wang
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2012/738082
Description
Summary:For better discussing and understanding the physical phenomena and body-fluid interaction of water-entry problem, here mechanical-energy transport (wedge, fluid, and each other) of water-entry model for free falling wedge is studied by numerical method based on free surface capturing method and Cartesian cut cell mesh. In this method, incompressible Euler equations for a variable density fluid are numerically calculated by the finite volume method. Then artificial compressibility method, dual-time stepping technique, and Roe's approximate Riemann solver are applied in the numerical scheme. Furthermore, the projection method of momentum equations and exact Riemann solution are used to calculate the fluid pressure on solid boundary. On this basis, during water-entry phase of the free-falling wedge, macroscopic energy conversion of overall body-fluid system and microscopic energy transformation in fluid field are analyzed and discussed. Finally, based on test cases, many useful conclusions about mechanical energy transport for water entry problem are made and presented.
ISSN:1110-757X
1687-0042