Pt Monolayers on Electrodeposited Nanoparticles of Different Compositions for Ammonia Electro-Oxidation

Pt monolayers (PtML) supported on nanoparticles with different compositions (i.e., Ru, Rh, Pd, Ir, and Au) were synthesized by the surface–limited redox replacement of underpotentially deposited Cu monolayers on nanoparticle supports. Nanoparticle supports with different compositions were...

Full description

Bibliographic Details
Main Authors: Jie Liu, Bin Liu, Yating Wu, Xu Chen, Jinfeng Zhang, Yida Deng, Wenbin Hu, Cheng Zhong
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Catalysts
Subjects:
Online Access:http://www.mdpi.com/2073-4344/9/1/4
Description
Summary:Pt monolayers (PtML) supported on nanoparticles with different compositions (i.e., Ru, Rh, Pd, Ir, and Au) were synthesized by the surface–limited redox replacement of underpotentially deposited Cu monolayers on nanoparticle supports. Nanoparticle supports with different compositions were directly deposited on the conducting substrate by a clean and one-step electrodeposition method with controlled deposition potential and time. The whole synthesis process of the electrode was free of surfactants, binders, capping agents and reductants, and without an additional coating process of electrocatalysts. The results show that the specific activity (SA) of PtML electrocatalysts depended strongly on the composition of the nanoparticle support. For example, the PtML supported on the Au nanoparticle exhibited 8.3 times higher SA than that supported on the Ru and Pd nanoparticles. The change in the SA of the PtML supported on different nanoparticles was related to the substrate–induced strain in the PtML resulting from the lattice mismatch between the PtML and the nanoparticle support. As the strain in the PtML changed from the tensile strain to the compressive strain, the SA of the PtML electrocatalysts decreased remarkably.
ISSN:2073-4344