Stability of Equilibrium Points of Fractional Difference Equations with Stochastic Perturbations

<p/> <p>It is supposed that the fractional difference equation <inline-formula> <graphic file="1687-1847-2008-718408-i1.gif"/></inline-formula>, <inline-formula> <graphic file="1687-1847-2008-718408-i2.gif"/></inline-formula> has an...

Full description

Bibliographic Details
Main Authors: Shaikhet Leonid, Paternoster Beatrice
Format: Article
Language:English
Published: SpringerOpen 2008-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2008/718408
id doaj-08426b1c524648788b07dcb5673982ea
record_format Article
spelling doaj-08426b1c524648788b07dcb5673982ea2020-11-24T23:28:06ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472008-01-0120081718408Stability of Equilibrium Points of Fractional Difference Equations with Stochastic PerturbationsShaikhet LeonidPaternoster Beatrice<p/> <p>It is supposed that the fractional difference equation <inline-formula> <graphic file="1687-1847-2008-718408-i1.gif"/></inline-formula>, <inline-formula> <graphic file="1687-1847-2008-718408-i2.gif"/></inline-formula> has an equilibrium point <inline-formula> <graphic file="1687-1847-2008-718408-i3.gif"/></inline-formula> and is exposed to additive stochastic perturbations type of <inline-formula> <graphic file="1687-1847-2008-718408-i4.gif"/></inline-formula> that are directly proportional to the deviation of the system state <inline-formula> <graphic file="1687-1847-2008-718408-i5.gif"/></inline-formula> from the equilibrium point <inline-formula> <graphic file="1687-1847-2008-718408-i6.gif"/></inline-formula>. It is shown that known results in the theory of stability of stochastic difference equations that were obtained via V. Kolmanovskii and L. Shaikhet general method of Lyapunov functionals construction can be successfully used for getting of sufficient conditions for stability in probability of equilibrium points of the considered stochastic fractional difference equation. Numerous graphical illustrations of stability regions and trajectories of solutions are plotted.</p>http://www.advancesindifferenceequations.com/content/2008/718408
collection DOAJ
language English
format Article
sources DOAJ
author Shaikhet Leonid
Paternoster Beatrice
spellingShingle Shaikhet Leonid
Paternoster Beatrice
Stability of Equilibrium Points of Fractional Difference Equations with Stochastic Perturbations
Advances in Difference Equations
author_facet Shaikhet Leonid
Paternoster Beatrice
author_sort Shaikhet Leonid
title Stability of Equilibrium Points of Fractional Difference Equations with Stochastic Perturbations
title_short Stability of Equilibrium Points of Fractional Difference Equations with Stochastic Perturbations
title_full Stability of Equilibrium Points of Fractional Difference Equations with Stochastic Perturbations
title_fullStr Stability of Equilibrium Points of Fractional Difference Equations with Stochastic Perturbations
title_full_unstemmed Stability of Equilibrium Points of Fractional Difference Equations with Stochastic Perturbations
title_sort stability of equilibrium points of fractional difference equations with stochastic perturbations
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1839
1687-1847
publishDate 2008-01-01
description <p/> <p>It is supposed that the fractional difference equation <inline-formula> <graphic file="1687-1847-2008-718408-i1.gif"/></inline-formula>, <inline-formula> <graphic file="1687-1847-2008-718408-i2.gif"/></inline-formula> has an equilibrium point <inline-formula> <graphic file="1687-1847-2008-718408-i3.gif"/></inline-formula> and is exposed to additive stochastic perturbations type of <inline-formula> <graphic file="1687-1847-2008-718408-i4.gif"/></inline-formula> that are directly proportional to the deviation of the system state <inline-formula> <graphic file="1687-1847-2008-718408-i5.gif"/></inline-formula> from the equilibrium point <inline-formula> <graphic file="1687-1847-2008-718408-i6.gif"/></inline-formula>. It is shown that known results in the theory of stability of stochastic difference equations that were obtained via V. Kolmanovskii and L. Shaikhet general method of Lyapunov functionals construction can be successfully used for getting of sufficient conditions for stability in probability of equilibrium points of the considered stochastic fractional difference equation. Numerous graphical illustrations of stability regions and trajectories of solutions are plotted.</p>
url http://www.advancesindifferenceequations.com/content/2008/718408
work_keys_str_mv AT shaikhetleonid stabilityofequilibriumpointsoffractionaldifferenceequationswithstochasticperturbations
AT paternosterbeatrice stabilityofequilibriumpointsoffractionaldifferenceequationswithstochasticperturbations
_version_ 1725550727952072704