Processing Chip for Thin Film Bulk Acoustic Resonator Mass Sensor

Aimed at portable application, a new integrated process chip for thin film bulk acoustic resonator (FBAR) mass sensor is proposed and verified with 0.18 um CMOS processing in this paper. The longitudinal mode FBAR with back-etched structure is fabricated, which has resonant frequency 1.878 GHz and...

Full description

Bibliographic Details
Main Authors: Pengcheng Jin, Shurong Dong, Hao Jin, Mengjun Wu
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Journal of Control Science and Engineering
Online Access:http://dx.doi.org/10.1155/2012/923617
Description
Summary:Aimed at portable application, a new integrated process chip for thin film bulk acoustic resonator (FBAR) mass sensor is proposed and verified with 0.18 um CMOS processing in this paper. The longitudinal mode FBAR with back-etched structure is fabricated, which has resonant frequency 1.878 GHz and factor 1200. The FBAR oscillator, based on the current-reuse structure, is designed with Modified Butterworth Van Dyke (MBVD) model. The result shows that the FBAR oscillator operates at 1.878 GHz with a phase noise of −107 dBc/Hz and −135 dBc/Hz at 10 KHz and 100 KHz frequency offset, respectively. The whole process chip size with pads is 1300 μm × 950 μm. The FBAR and process chip are bonded together to sense tiny mass. The measurement results show that this chip precision is 1 KHz with the FBAR frequency gap from 25 kHz to 25 MHz.
ISSN:1687-5249
1687-5257