Microstructure Evolution of Electron Beam Physical Vapour Deposited Ni-23.5Cr-2.66Co-1.44Al Superalloy Sheet During Annealing at 600 °C

Microstructure evolution of electron beam physical vapour deposited (EB-PVD) Ni‑23.5Cr‑2.66Co‑1.44Al superalloy sheet during annealing at 600 °C was investigated. The results showed that the as-deposited alloy was composed of only g phase. After annealing at 600 °C, the...

Full description

Bibliographic Details
Main Authors: Li Mingwei, Zeng Gang, Zhong Yesheng, He Fei, He Xiaodong
Format: Article
Language:English
Published: Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol) 2013-02-01
Series:Materials Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392013000100011
Description
Summary:Microstructure evolution of electron beam physical vapour deposited (EB-PVD) Ni‑23.5Cr‑2.66Co‑1.44Al superalloy sheet during annealing at 600 °C was investigated. The results showed that the as-deposited alloy was composed of only g phase. After annealing at 600 °C, the locations of diffraction peaks were still the same. The (220) diffraction peak of the deposition side increased with annealing time. The sheet on deposited side had a tendency toward forming (220) texture during post-annealing. No obvious texture was observed at as-deposited and annealed sheet at 600 °C in substrate side. The count and size of "voids" decreased with time. The size of grains increased obviously with annealing time. The ultimate tensile strength of EB-PVD Ni-23.5Cr-2.66Co-1.44Al alloy sheet increased from 641 MPa to 829 MPa after annealing at 600 °C for 30 hours.
ISSN:1516-1439