Monitoring the initiation and kinetics of human dendritic cell-induced polarization of autologous naive CD4+ T cells.

A crucial step in generating de novo immune responses is the polarization of naive cognate CD4+ T cells by pathogen-triggered dendritic cells (DC). In the human setting, standardized DC-dependent systems are lacking to study molecular events during the initiation of a naive CD4+ T cell response. We...

Full description

Bibliographic Details
Main Authors: Tammy Oth, Melanie C A Schnijderberg, Birgit L M G Senden-Gijsbers, Wilfred T V Germeraad, Gerard M J Bos, Joris Vanderlocht
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4140687?pdf=render
Description
Summary:A crucial step in generating de novo immune responses is the polarization of naive cognate CD4+ T cells by pathogen-triggered dendritic cells (DC). In the human setting, standardized DC-dependent systems are lacking to study molecular events during the initiation of a naive CD4+ T cell response. We developed a TCR-restricted assay to compare different pathogen-triggered human DC for their capacities to instruct functional differentiation of autologous, naive CD4+ T cells. We demonstrated that this methodology can be applied to compare differently matured DC in terms of kinetics, direction, and magnitude of the naive CD4+ T cell response. Furthermore, we showed the applicability of this assay to study the T cell polarizing capacity of low-frequency blood-derived DC populations directly isolated ex vivo. This methodology for addressing APC-dependent instruction of naive CD4+ T cells in a human autologous setting will provide researchers with a valuable tool to gain more insight into molecular mechanisms occurring in the early phase of T cell polarization. In addition, it may also allow the study of pharmacological agents on DC-dependent T cell polarization in the human system.
ISSN:1932-6203