The Hunt for Environmental Noise in Virgo during the Third Observing Run

The first twenty years of operation of gravitational-wave interferometers have shown that these detectors are affected by physical disturbances from the surrounding environment. These are seismic, acoustic, or electromagnetic disturbances that are mainly produced by the experiment infrastructure its...

Full description

Bibliographic Details
Main Authors: Irene Fiori, Federico Paoletti, Maria Concetta Tringali, Kamiel Janssens, Christos Karathanasis, Alexis Menéndez-Vázquez, Alba Romero-Rodríguez, Ryosuke Sugimoto, Tatsuki Washimi, Valerio Boschi, Antonino Chiummo, Marek Cieślar, Rosario De Rosa, Camilla De Rossi, Francesco Di Renzo, Ilaria Nardecchia, Antonio Pasqualetti, Barbara Patricelli, Paolo Ruggi, Neha Singh
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Galaxies
Subjects:
Online Access:https://www.mdpi.com/2075-4434/8/4/82
Description
Summary:The first twenty years of operation of gravitational-wave interferometers have shown that these detectors are affected by physical disturbances from the surrounding environment. These are seismic, acoustic, or electromagnetic disturbances that are mainly produced by the experiment infrastructure itself. Ambient noise can limit the interferometer sensitivity or potentially generate transients of non-astrophysical origin. Between 1 April 2019 and 27 March 2020, the network of second generation interferometers—LIGO, Virgo and GEO—performed the third joined observing run, named O3, searching for gravitational signals from the deep universe. A thorough investigation has been done on each detector before and during data taking in order to optimize its sensitivity and duty cycle. In this paper, we first revisit typical sources of environmental noise and their coupling paths, and we then describe investigation methods and tools. Finally, we illustrate applications of these methods in the hunt for environmental noise at the Virgo interferometer during the O3 run and its preparation phase. In particular, we highlight investigation techniques that might be useful for the next observing runs and the future generation of terrestrial interferometers.
ISSN:2075-4434