The Bioinspired Model-Based Hybrid Sliding-Mode Formation Control for Underactuated Unmanned Surface Vehicles

In this paper, a novel hybrid strategy is proposed for unmanned surface vehicle (USV) formation control. The strategy is divided into two subsystems: a virtual velocity controller based on the bioinspired model and a dynamic controller based on the sliding-mode model. The proposed control scheme sol...

Full description

Bibliographic Details
Main Authors: Mingyu Fu, Duansong Wang
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Journal of Control Science and Engineering
Online Access:http://dx.doi.org/10.1155/2018/7563178
Description
Summary:In this paper, a novel hybrid strategy is proposed for unmanned surface vehicle (USV) formation control. The strategy is divided into two subsystems: a virtual velocity controller based on the bioinspired model and a dynamic controller based on the sliding-mode model. The proposed control scheme solves the problem of a speed jump that occurs in the traditional backstepping method when the margin of error increases suddenly, and it also satisfies the actuator control constraint. Additionally, a dynamic controller is designed, combining the sliding mode with the proposed virtual controller, to avoid the traditional chattering problem. System stability is proven by the Lyapunov theory. Simulation results verify the effectiveness of the proposed controller.
ISSN:1687-5249
1687-5257