Electrical circuits RC and RL involving fractional operators with bi-order

This article describes electrical series circuits RC and RL using the concept of derivative with two fractional orders α and β in Liouville–Caputo sense. The fractional equations consider derivatives in the range of α , β ∈ ( 0 ; 1 ] . Numerical solutions are presented considering different source t...

Full description

Bibliographic Details
Main Authors: JF Gómez-Aguilar, RF Escobar-Jiménez, VH Olivares-Peregrino, MA Taneco-Hernández, GV Guerrero-Ramírez
Format: Article
Language:English
Published: SAGE Publishing 2017-06-01
Series:Advances in Mechanical Engineering
Online Access:https://doi.org/10.1177/1687814017707132
id doaj-09dbebc00cdf4261b4ffd09803354cea
record_format Article
spelling doaj-09dbebc00cdf4261b4ffd09803354cea2020-11-25T03:40:41ZengSAGE PublishingAdvances in Mechanical Engineering1687-81402017-06-01910.1177/1687814017707132Electrical circuits RC and RL involving fractional operators with bi-orderJF Gómez-Aguilar0RF Escobar-Jiménez1VH Olivares-Peregrino2MA Taneco-Hernández3GV Guerrero-Ramírez4CONACyT-Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Cuernavaca, MéxicoCentro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Cuernavaca, MéxicoCentro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Cuernavaca, MéxicoUnidad Académica de Matemáticas, Universidad Autónoma de Guerrero, Chilpancingo, MéxicoCentro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Cuernavaca, MéxicoThis article describes electrical series circuits RC and RL using the concept of derivative with two fractional orders α and β in Liouville–Caputo sense. The fractional equations consider derivatives in the range of α , β ∈ ( 0 ; 1 ] . Numerical solutions are presented considering different source terms introduced in the fractional equation. This new approach considers electrical elements with two different properties. In addition, we prove that if α = 0 , the fractional derivative with Mittag-Leffler kernel in Liouville–Caputo sense is recovered, and when β = 0 , the Liouville–Caputo fractional derivative is recovered.https://doi.org/10.1177/1687814017707132
collection DOAJ
language English
format Article
sources DOAJ
author JF Gómez-Aguilar
RF Escobar-Jiménez
VH Olivares-Peregrino
MA Taneco-Hernández
GV Guerrero-Ramírez
spellingShingle JF Gómez-Aguilar
RF Escobar-Jiménez
VH Olivares-Peregrino
MA Taneco-Hernández
GV Guerrero-Ramírez
Electrical circuits RC and RL involving fractional operators with bi-order
Advances in Mechanical Engineering
author_facet JF Gómez-Aguilar
RF Escobar-Jiménez
VH Olivares-Peregrino
MA Taneco-Hernández
GV Guerrero-Ramírez
author_sort JF Gómez-Aguilar
title Electrical circuits RC and RL involving fractional operators with bi-order
title_short Electrical circuits RC and RL involving fractional operators with bi-order
title_full Electrical circuits RC and RL involving fractional operators with bi-order
title_fullStr Electrical circuits RC and RL involving fractional operators with bi-order
title_full_unstemmed Electrical circuits RC and RL involving fractional operators with bi-order
title_sort electrical circuits rc and rl involving fractional operators with bi-order
publisher SAGE Publishing
series Advances in Mechanical Engineering
issn 1687-8140
publishDate 2017-06-01
description This article describes electrical series circuits RC and RL using the concept of derivative with two fractional orders α and β in Liouville–Caputo sense. The fractional equations consider derivatives in the range of α , β ∈ ( 0 ; 1 ] . Numerical solutions are presented considering different source terms introduced in the fractional equation. This new approach considers electrical elements with two different properties. In addition, we prove that if α = 0 , the fractional derivative with Mittag-Leffler kernel in Liouville–Caputo sense is recovered, and when β = 0 , the Liouville–Caputo fractional derivative is recovered.
url https://doi.org/10.1177/1687814017707132
work_keys_str_mv AT jfgomezaguilar electricalcircuitsrcandrlinvolvingfractionaloperatorswithbiorder
AT rfescobarjimenez electricalcircuitsrcandrlinvolvingfractionaloperatorswithbiorder
AT vholivaresperegrino electricalcircuitsrcandrlinvolvingfractionaloperatorswithbiorder
AT matanecohernandez electricalcircuitsrcandrlinvolvingfractionaloperatorswithbiorder
AT gvguerreroramirez electricalcircuitsrcandrlinvolvingfractionaloperatorswithbiorder
_version_ 1724533424553721856