Electrical circuits RC and RL involving fractional operators with bi-order
This article describes electrical series circuits RC and RL using the concept of derivative with two fractional orders α and β in Liouville–Caputo sense. The fractional equations consider derivatives in the range of α , β ∈ ( 0 ; 1 ] . Numerical solutions are presented considering different source t...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2017-06-01
|
Series: | Advances in Mechanical Engineering |
Online Access: | https://doi.org/10.1177/1687814017707132 |
id |
doaj-09dbebc00cdf4261b4ffd09803354cea |
---|---|
record_format |
Article |
spelling |
doaj-09dbebc00cdf4261b4ffd09803354cea2020-11-25T03:40:41ZengSAGE PublishingAdvances in Mechanical Engineering1687-81402017-06-01910.1177/1687814017707132Electrical circuits RC and RL involving fractional operators with bi-orderJF Gómez-Aguilar0RF Escobar-Jiménez1VH Olivares-Peregrino2MA Taneco-Hernández3GV Guerrero-Ramírez4CONACyT-Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Cuernavaca, MéxicoCentro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Cuernavaca, MéxicoCentro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Cuernavaca, MéxicoUnidad Académica de Matemáticas, Universidad Autónoma de Guerrero, Chilpancingo, MéxicoCentro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Cuernavaca, MéxicoThis article describes electrical series circuits RC and RL using the concept of derivative with two fractional orders α and β in Liouville–Caputo sense. The fractional equations consider derivatives in the range of α , β ∈ ( 0 ; 1 ] . Numerical solutions are presented considering different source terms introduced in the fractional equation. This new approach considers electrical elements with two different properties. In addition, we prove that if α = 0 , the fractional derivative with Mittag-Leffler kernel in Liouville–Caputo sense is recovered, and when β = 0 , the Liouville–Caputo fractional derivative is recovered.https://doi.org/10.1177/1687814017707132 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
JF Gómez-Aguilar RF Escobar-Jiménez VH Olivares-Peregrino MA Taneco-Hernández GV Guerrero-Ramírez |
spellingShingle |
JF Gómez-Aguilar RF Escobar-Jiménez VH Olivares-Peregrino MA Taneco-Hernández GV Guerrero-Ramírez Electrical circuits RC and RL involving fractional operators with bi-order Advances in Mechanical Engineering |
author_facet |
JF Gómez-Aguilar RF Escobar-Jiménez VH Olivares-Peregrino MA Taneco-Hernández GV Guerrero-Ramírez |
author_sort |
JF Gómez-Aguilar |
title |
Electrical circuits RC and RL involving fractional operators with bi-order |
title_short |
Electrical circuits RC and RL involving fractional operators with bi-order |
title_full |
Electrical circuits RC and RL involving fractional operators with bi-order |
title_fullStr |
Electrical circuits RC and RL involving fractional operators with bi-order |
title_full_unstemmed |
Electrical circuits RC and RL involving fractional operators with bi-order |
title_sort |
electrical circuits rc and rl involving fractional operators with bi-order |
publisher |
SAGE Publishing |
series |
Advances in Mechanical Engineering |
issn |
1687-8140 |
publishDate |
2017-06-01 |
description |
This article describes electrical series circuits RC and RL using the concept of derivative with two fractional orders α and β in Liouville–Caputo sense. The fractional equations consider derivatives in the range of α , β ∈ ( 0 ; 1 ] . Numerical solutions are presented considering different source terms introduced in the fractional equation. This new approach considers electrical elements with two different properties. In addition, we prove that if α = 0 , the fractional derivative with Mittag-Leffler kernel in Liouville–Caputo sense is recovered, and when β = 0 , the Liouville–Caputo fractional derivative is recovered. |
url |
https://doi.org/10.1177/1687814017707132 |
work_keys_str_mv |
AT jfgomezaguilar electricalcircuitsrcandrlinvolvingfractionaloperatorswithbiorder AT rfescobarjimenez electricalcircuitsrcandrlinvolvingfractionaloperatorswithbiorder AT vholivaresperegrino electricalcircuitsrcandrlinvolvingfractionaloperatorswithbiorder AT matanecohernandez electricalcircuitsrcandrlinvolvingfractionaloperatorswithbiorder AT gvguerreroramirez electricalcircuitsrcandrlinvolvingfractionaloperatorswithbiorder |
_version_ |
1724533424553721856 |