Germinant Synergy Facilitates Clostridium difficile Spore Germination under Physiological Conditions

Clostridium difficile is an anaerobic spore-forming human pathogen that is the leading cause of nosocomial infectious diarrhea worldwide. Germination of infectious spores is the first step in the development of a C. difficile infection (CDI) after ingestion and passage through the stomach. This stud...

Full description

Bibliographic Details
Main Authors: Travis J. Kochan, Michelle S. Shoshiev, Jessica L. Hastie, Madeline J. Somers, Yael M. Plotnick, Daniela F. Gutierrez-Munoz, Elissa D. Foss, Alyxandria M. Schubert, Ashley D. Smith, Sally K. Zimmerman, Paul E. Carlson, Philip C. Hanna
Format: Article
Language:English
Published: American Society for Microbiology 2018-09-01
Series:mSphere
Subjects:
Online Access:https://doi.org/10.1128/mSphere.00335-18
id doaj-09ef300c58b5498381dbe8b928876a6e
record_format Article
spelling doaj-09ef300c58b5498381dbe8b928876a6e2020-11-25T00:27:34ZengAmerican Society for MicrobiologymSphere2379-50422018-09-0135e00335-1810.1128/mSphere.00335-18Germinant Synergy Facilitates Clostridium difficile Spore Germination under Physiological ConditionsTravis J. KochanMichelle S. ShoshievJessica L. HastieMadeline J. SomersYael M. PlotnickDaniela F. Gutierrez-MunozElissa D. FossAlyxandria M. SchubertAshley D. SmithSally K. ZimmermanPaul E. CarlsonPhilip C. HannaClostridium difficile is an anaerobic spore-forming human pathogen that is the leading cause of nosocomial infectious diarrhea worldwide. Germination of infectious spores is the first step in the development of a C. difficile infection (CDI) after ingestion and passage through the stomach. This study investigates the specific conditions that facilitate C. difficile spore germination, including the following: location within the gastrointestinal (GI) tract, pH, temperature, and germinant concentration. The germinants that have been identified in culture include combinations of bile salts and amino acids or bile salts and calcium, but in vitro, these function at concentrations that far exceed normal physiological ranges normally found in the mammalian GI tract. In this work, we describe and quantify a previously unreported synergy observed when bile salts, calcium, and amino acids are added together. These germinant cocktails improve germination efficiency by decreasing the required concentrations of germinants to physiologically relevant levels. Combinations of multiple germinant types are also able to overcome the effects of inhibitory bile salts. In addition, we propose that the acidic conditions within the GI tract regulate C. difficile spore germination and could provide a biological explanation for why patients taking proton pump inhibitors are associated with increased risk of developing a CDI.Clostridium difficile is a Gram-positive obligate anaerobe that forms spores in order to survive for long periods in the unfavorable environment outside a host. C. difficile is the leading cause of nosocomial infectious diarrhea worldwide. C. difficile infection (CDI) arises after a patient treated with broad-spectrum antibiotics ingests infectious spores. The first step in C. difficile pathogenesis is the metabolic reactivation of dormant spores within the gastrointestinal (GI) tract through a process known as germination. In this work, we aim to elucidate the specific conditions and the location within the GI tract that facilitate this process. Our data suggest that C. difficile germination occurs through a two-step biochemical process that is regulated by pH and bile salts, amino acids, and calcium present within the GI tract. Maximal germination occurs at a pH ranging from 6.5 to 8.5 in the terminal small intestine prior to bile salt and calcium reabsorption by the host. Germination can be initiated by lower concentrations of germinants when spores are incubated with a combination of bile salts, calcium, and amino acids, and this synergy is dependent on the availability of calcium. The synergy described here allows germination to proceed in the presence of inhibitory bile salts and at physiological concentrations of germinants, effectively decreasing the concentrations of nutrients required to initiate an essential step of pathogenesis.https://doi.org/10.1128/mSphere.00335-18Clostridium difficilegerminationspore
collection DOAJ
language English
format Article
sources DOAJ
author Travis J. Kochan
Michelle S. Shoshiev
Jessica L. Hastie
Madeline J. Somers
Yael M. Plotnick
Daniela F. Gutierrez-Munoz
Elissa D. Foss
Alyxandria M. Schubert
Ashley D. Smith
Sally K. Zimmerman
Paul E. Carlson
Philip C. Hanna
spellingShingle Travis J. Kochan
Michelle S. Shoshiev
Jessica L. Hastie
Madeline J. Somers
Yael M. Plotnick
Daniela F. Gutierrez-Munoz
Elissa D. Foss
Alyxandria M. Schubert
Ashley D. Smith
Sally K. Zimmerman
Paul E. Carlson
Philip C. Hanna
Germinant Synergy Facilitates Clostridium difficile Spore Germination under Physiological Conditions
mSphere
Clostridium difficile
germination
spore
author_facet Travis J. Kochan
Michelle S. Shoshiev
Jessica L. Hastie
Madeline J. Somers
Yael M. Plotnick
Daniela F. Gutierrez-Munoz
Elissa D. Foss
Alyxandria M. Schubert
Ashley D. Smith
Sally K. Zimmerman
Paul E. Carlson
Philip C. Hanna
author_sort Travis J. Kochan
title Germinant Synergy Facilitates Clostridium difficile Spore Germination under Physiological Conditions
title_short Germinant Synergy Facilitates Clostridium difficile Spore Germination under Physiological Conditions
title_full Germinant Synergy Facilitates Clostridium difficile Spore Germination under Physiological Conditions
title_fullStr Germinant Synergy Facilitates Clostridium difficile Spore Germination under Physiological Conditions
title_full_unstemmed Germinant Synergy Facilitates Clostridium difficile Spore Germination under Physiological Conditions
title_sort germinant synergy facilitates clostridium difficile spore germination under physiological conditions
publisher American Society for Microbiology
series mSphere
issn 2379-5042
publishDate 2018-09-01
description Clostridium difficile is an anaerobic spore-forming human pathogen that is the leading cause of nosocomial infectious diarrhea worldwide. Germination of infectious spores is the first step in the development of a C. difficile infection (CDI) after ingestion and passage through the stomach. This study investigates the specific conditions that facilitate C. difficile spore germination, including the following: location within the gastrointestinal (GI) tract, pH, temperature, and germinant concentration. The germinants that have been identified in culture include combinations of bile salts and amino acids or bile salts and calcium, but in vitro, these function at concentrations that far exceed normal physiological ranges normally found in the mammalian GI tract. In this work, we describe and quantify a previously unreported synergy observed when bile salts, calcium, and amino acids are added together. These germinant cocktails improve germination efficiency by decreasing the required concentrations of germinants to physiologically relevant levels. Combinations of multiple germinant types are also able to overcome the effects of inhibitory bile salts. In addition, we propose that the acidic conditions within the GI tract regulate C. difficile spore germination and could provide a biological explanation for why patients taking proton pump inhibitors are associated with increased risk of developing a CDI.Clostridium difficile is a Gram-positive obligate anaerobe that forms spores in order to survive for long periods in the unfavorable environment outside a host. C. difficile is the leading cause of nosocomial infectious diarrhea worldwide. C. difficile infection (CDI) arises after a patient treated with broad-spectrum antibiotics ingests infectious spores. The first step in C. difficile pathogenesis is the metabolic reactivation of dormant spores within the gastrointestinal (GI) tract through a process known as germination. In this work, we aim to elucidate the specific conditions and the location within the GI tract that facilitate this process. Our data suggest that C. difficile germination occurs through a two-step biochemical process that is regulated by pH and bile salts, amino acids, and calcium present within the GI tract. Maximal germination occurs at a pH ranging from 6.5 to 8.5 in the terminal small intestine prior to bile salt and calcium reabsorption by the host. Germination can be initiated by lower concentrations of germinants when spores are incubated with a combination of bile salts, calcium, and amino acids, and this synergy is dependent on the availability of calcium. The synergy described here allows germination to proceed in the presence of inhibitory bile salts and at physiological concentrations of germinants, effectively decreasing the concentrations of nutrients required to initiate an essential step of pathogenesis.
topic Clostridium difficile
germination
spore
url https://doi.org/10.1128/mSphere.00335-18
work_keys_str_mv AT travisjkochan germinantsynergyfacilitatesclostridiumdifficilesporegerminationunderphysiologicalconditions
AT michellesshoshiev germinantsynergyfacilitatesclostridiumdifficilesporegerminationunderphysiologicalconditions
AT jessicalhastie germinantsynergyfacilitatesclostridiumdifficilesporegerminationunderphysiologicalconditions
AT madelinejsomers germinantsynergyfacilitatesclostridiumdifficilesporegerminationunderphysiologicalconditions
AT yaelmplotnick germinantsynergyfacilitatesclostridiumdifficilesporegerminationunderphysiologicalconditions
AT danielafgutierrezmunoz germinantsynergyfacilitatesclostridiumdifficilesporegerminationunderphysiologicalconditions
AT elissadfoss germinantsynergyfacilitatesclostridiumdifficilesporegerminationunderphysiologicalconditions
AT alyxandriamschubert germinantsynergyfacilitatesclostridiumdifficilesporegerminationunderphysiologicalconditions
AT ashleydsmith germinantsynergyfacilitatesclostridiumdifficilesporegerminationunderphysiologicalconditions
AT sallykzimmerman germinantsynergyfacilitatesclostridiumdifficilesporegerminationunderphysiologicalconditions
AT paulecarlson germinantsynergyfacilitatesclostridiumdifficilesporegerminationunderphysiologicalconditions
AT philipchanna germinantsynergyfacilitatesclostridiumdifficilesporegerminationunderphysiologicalconditions
_version_ 1716166696147877888