Quadratic ideals, indefinite quadratic forms and some specific diophantine equations
Let $k\geq 1$ be an integer and let $P=k+2,Q=k$ and $D=k^{2}+4$. In this paper, we derived some algebraic properties of quadratic ideals $I_{\gamma}$ and indefinite quadratic forms $F_{\gamma }$ for quadratic irrationals $\gamma$, and then we determine the set of all integer solutions of the Diophan...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2018-07-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/30799 |
Summary: | Let $k\geq 1$ be an integer and let $P=k+2,Q=k$ and $D=k^{2}+4$. In this paper, we derived some algebraic properties of quadratic ideals $I_{\gamma}$ and indefinite quadratic forms $F_{\gamma }$ for quadratic irrationals $\gamma$, and then we determine the set of all integer solutions of the Diophantine equation $F_{\gamma }^{\pm k}(x,y)=\pm Q$. |
---|---|
ISSN: | 0037-8712 2175-1188 |