Adjustment of Subwavelength Rippled Structures on Titanium by Two-Step Fabrication Using Femtosecond Laser Pulses

An effective approach is proposed to adjust the surface morphology induced by using a femtosecond laser, including the area and period of rippled structures. The effect of the processing steps and laser polarization on the surface morphology of rippled structures on a titanium surface was experiment...

Full description

Bibliographic Details
Main Authors: Yanping Yuan, Xinyang Guo, Yitong Shang, Jimin Chen
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/5/2250
Description
Summary:An effective approach is proposed to adjust the surface morphology induced by using a femtosecond laser, including the area and period of rippled structures. The effect of the processing steps and laser polarization on the surface morphology of rippled structures on a titanium surface was experimentally investigated in this study. A processing sequence was designed for two series of femtosecond laser pulses that irradiate a titanium surface, for example, N = 50(0°) + 50(90°). The experimental results show that the area and period of rippled structures can be simultaneously adjusted by following a two-step method. Due to the enhancement of energy absorption and SP-laser coupling of the initial rippled structures, large area surface structures with small periods are fabricated using two series of femtosecond laser pulses with the same polarization direction. By changing the polarization direction of the two series of femtosecond laser pulses, the recording, erasing, and rewriting of subwavelength ripples is achieved. During the rewriting process, material removal and the formation of new ripples simultaneously occur.
ISSN:2076-3417