Crystal structure of dimethylammonium hydrogen oxalate hemi(oxalic acid)

Single crystals of the title salt, Me2NH2+·HC2O4−·0.5H2C2O4, were isolated as a side product from the reaction involving Me2NH, H2C2O4 and Sn(n-Bu)3Cl in a 1:2 ratio in methanol or by the reaction of the (Me2NH2)2C2O4 salt and Sn(CH3)3Cl in a 2:1 ratio in ethanol. The asymmetric unit comprises a dim...

Full description

Bibliographic Details
Main Authors: Waly Diallo, Ndongo Gueye, Aurélien Crochet, Laurent Plasseraud, Hélène Cattey
Format: Article
Language:English
Published: International Union of Crystallography 2015-05-01
Series:Acta Crystallographica Section E: Crystallographic Communications
Subjects:
Online Access:http://scripts.iucr.org/cgi-bin/paper?S2056989015005964
Description
Summary:Single crystals of the title salt, Me2NH2+·HC2O4−·0.5H2C2O4, were isolated as a side product from the reaction involving Me2NH, H2C2O4 and Sn(n-Bu)3Cl in a 1:2 ratio in methanol or by the reaction of the (Me2NH2)2C2O4 salt and Sn(CH3)3Cl in a 2:1 ratio in ethanol. The asymmetric unit comprises a dimethylammonium cation (Me2NH2+), an hydrogenoxalate anion (HC2O4−), and half a molecule of oxalic acid (H2C2O4) situated about an inversion center. From a supramolecular point of view, the three components interact together via hydrogen bonding. The Me2NH2+ cations and the HC2O4− anions are in close proximity through bifurcated N—H...(O,O) hydrogen bonds, while the HC2O4− anions are organized into infinite chains via O—H...O hydrogen bonds, propagating along the a-axis direction. In addition, the oxalic acid (H2C2O4) molecules play the role of connectors between these chains. Both the carbonyl and hydroxyl groups of each diacid are involved in four intermolecular interactions with two Me2NH2+ and two HC2O4− ions of four distinct polymeric chains, via two N—H...O and two O—H...O hydrogen bonds, respectively. The resulting molecular assembly can be viewed as a two-dimensional bilayer-like arrangement lying parallel to (010), and reinforced by a C—H...O hydrogen bond.
ISSN:2056-9890