Estimate the annual soil loss in Kummattipatti Nadi watershed using rusle model through geospatial technology

Soil erosion and soil loss is one of the common problems threatening the environment. This degrading phenomenon declines the soil fertility and significantly affects the agricultural activity. As a consequence, the productivity of soil is affected unquestionably. In this reason, there is a basic ne...

Full description

Bibliographic Details
Main Authors: Suraj Shaikh, Masilamani Palanisamy, Abdul Rahaman Sheik Mohideen
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2020-07-01
Series:Geodesy and Cartography
Subjects:
Online Access:https://journals.vgtu.lt/index.php/GAC/article/view/10569
Description
Summary:Soil erosion and soil loss is one of the common problems threatening the environment. This degrading phenomenon declines the soil fertility and significantly affects the agricultural activity. As a consequence, the productivity of soil is affected unquestionably. In this reason, there is a basic need to take up conservation and management measures which can be applied to check further soil erosion. Even though, soil erosion is a mass process spread cross the watershed, it is not economically viable to implement conservation techniques to the entire watershed. However, a method is a pre-requisite to identify the most vulnerable areas and quantify the soil erosion. In this study, Revised Universal Soil Loss Equation (RUSLE) has been accepted to estimate soil erosion in the Kummattipatti Nadi watershed part of the Coimbatore district of Tamil Nadu, India. This model has several parameters including runoff-rainfall erosivity factor (R), soil erodability Factor (K), topographic factor (LS), cropping management factor (C), and support practice factor (P). All these layers are prepared through geographical information system (GIS) by using various data sources and data preparation methods. The results of the study shows that the annual average soil loss within the watershed is about 6 t/ha/yr (metric ton per hectare per year). Higher soil erosion is observed in the land use classes of gullied wasteland, open scrub forest and degraded plantation. The soil erosion risk is extremely higher on the steep slopes and adjoining foothills. The proper conservation and management strategies has to be implement in this watershed for the development.
ISSN:2029-6991
2029-7009