All-Plasmonic Switching Effect in the Graphene Nanostructures Containing Quantum Emitters

Nonlinear plasmonic effects in perspective 2D materials containing low-dimensional quantum emitters can be a basis of a novel technological platform for the fabrication of fast all-plasmonic triggers, transistors, and sensors. This article considers the conditions for achieving a strong coupling bet...

Full description

Bibliographic Details
Main Authors: Mikhail Yu. Gubin, Andrey Yu. Leksin, Alexander V. Shesterikov, Alexei V. Prokhorov, Valentyn S. Volkov
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/10/1/122
id doaj-0b3628455d0d4ca48d220700264ff1c2
record_format Article
spelling doaj-0b3628455d0d4ca48d220700264ff1c22020-11-25T03:35:39ZengMDPI AGNanomaterials2079-49912020-01-0110112210.3390/nano10010122nano10010122All-Plasmonic Switching Effect in the Graphene Nanostructures Containing Quantum EmittersMikhail Yu. Gubin0Andrey Yu. Leksin1Alexander V. Shesterikov2Alexei V. Prokhorov3Valentyn S. Volkov4Department of Physics and Applied Mathematics, Vladimir State University named after Alexander and Nikolay Stoletovs (VlSU), Vladimir 600000, RussiaDepartment of Physics and Applied Mathematics, Vladimir State University named after Alexander and Nikolay Stoletovs (VlSU), Vladimir 600000, RussiaDepartment of Physics and Applied Mathematics, Vladimir State University named after Alexander and Nikolay Stoletovs (VlSU), Vladimir 600000, RussiaDepartment of Physics and Applied Mathematics, Vladimir State University named after Alexander and Nikolay Stoletovs (VlSU), Vladimir 600000, RussiaCenter for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny 141700, RussiaNonlinear plasmonic effects in perspective 2D materials containing low-dimensional quantum emitters can be a basis of a novel technological platform for the fabrication of fast all-plasmonic triggers, transistors, and sensors. This article considers the conditions for achieving a strong coupling between the surface plasmon&#8722;polariton (SPP) and quantum emitter taking into account the modification of local density of optical states in graphene waveguide. In the condition of strong coupling, nonlinear interaction between two SPP modes propagating along the graphene waveguide integrated with a stub nanoresonator loaded with core&#8722;shell semiconductor nanowires (NWs) was investigated. Using the 2D full-wave electromagnetic simulation, we studied the different transmittance regimes of the stub with NW for both the strong pump SPP and weak signal SPP tuned to interband and intraband transition in NW, respectively. We solved the practical problem of parameters optimization of graphene waveguide and semiconductor nanostructures and found such a regime of NW&#8722;SPP interaction that corresponds to the destructive interference with the signal SPP transmittance through the stub less than <inline-formula> <math display="inline"> <semantics> <mrow> <mn>7</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> in the case for pump SPP to be turned off. In contrast, the turning on the pump SPP leads to a transition to constructive interference in the stub and enhancement of signal SPP transmittance to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>93</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>. In our model, the effect of plasmonic switching occurs with a rate of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>50</mn> <mspace width="0.277778em"></mspace> <mi>GHz</mi> </mrow> </semantics> </math> </inline-formula> at wavelength <inline-formula> <math display="inline"> <semantics> <mrow> <mn>8</mn> <mspace width="0.277778em"></mspace> <mrow> <mi mathvariant="sans-serif">&#181;</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics> </math> </inline-formula> for signal SPP localized inside <inline-formula> <math display="inline"> <semantics> <mrow> <mn>20</mn> <mspace width="0.277778em"></mspace> <mi>nm</mi> </mrow> </semantics> </math> </inline-formula> graphene stub loaded with core&#8722;shell InAs/ZnS NW.https://www.mdpi.com/2079-4991/10/1/122graphene nanoplasmonicsgraphene waveguidecore–shell nanowiressurface plasmon–polaritonsnonlinear plasmon–exciton interactionsfdtd method
collection DOAJ
language English
format Article
sources DOAJ
author Mikhail Yu. Gubin
Andrey Yu. Leksin
Alexander V. Shesterikov
Alexei V. Prokhorov
Valentyn S. Volkov
spellingShingle Mikhail Yu. Gubin
Andrey Yu. Leksin
Alexander V. Shesterikov
Alexei V. Prokhorov
Valentyn S. Volkov
All-Plasmonic Switching Effect in the Graphene Nanostructures Containing Quantum Emitters
Nanomaterials
graphene nanoplasmonics
graphene waveguide
core–shell nanowires
surface plasmon–polaritons
nonlinear plasmon–exciton interactions
fdtd method
author_facet Mikhail Yu. Gubin
Andrey Yu. Leksin
Alexander V. Shesterikov
Alexei V. Prokhorov
Valentyn S. Volkov
author_sort Mikhail Yu. Gubin
title All-Plasmonic Switching Effect in the Graphene Nanostructures Containing Quantum Emitters
title_short All-Plasmonic Switching Effect in the Graphene Nanostructures Containing Quantum Emitters
title_full All-Plasmonic Switching Effect in the Graphene Nanostructures Containing Quantum Emitters
title_fullStr All-Plasmonic Switching Effect in the Graphene Nanostructures Containing Quantum Emitters
title_full_unstemmed All-Plasmonic Switching Effect in the Graphene Nanostructures Containing Quantum Emitters
title_sort all-plasmonic switching effect in the graphene nanostructures containing quantum emitters
publisher MDPI AG
series Nanomaterials
issn 2079-4991
publishDate 2020-01-01
description Nonlinear plasmonic effects in perspective 2D materials containing low-dimensional quantum emitters can be a basis of a novel technological platform for the fabrication of fast all-plasmonic triggers, transistors, and sensors. This article considers the conditions for achieving a strong coupling between the surface plasmon&#8722;polariton (SPP) and quantum emitter taking into account the modification of local density of optical states in graphene waveguide. In the condition of strong coupling, nonlinear interaction between two SPP modes propagating along the graphene waveguide integrated with a stub nanoresonator loaded with core&#8722;shell semiconductor nanowires (NWs) was investigated. Using the 2D full-wave electromagnetic simulation, we studied the different transmittance regimes of the stub with NW for both the strong pump SPP and weak signal SPP tuned to interband and intraband transition in NW, respectively. We solved the practical problem of parameters optimization of graphene waveguide and semiconductor nanostructures and found such a regime of NW&#8722;SPP interaction that corresponds to the destructive interference with the signal SPP transmittance through the stub less than <inline-formula> <math display="inline"> <semantics> <mrow> <mn>7</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> in the case for pump SPP to be turned off. In contrast, the turning on the pump SPP leads to a transition to constructive interference in the stub and enhancement of signal SPP transmittance to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>93</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>. In our model, the effect of plasmonic switching occurs with a rate of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>50</mn> <mspace width="0.277778em"></mspace> <mi>GHz</mi> </mrow> </semantics> </math> </inline-formula> at wavelength <inline-formula> <math display="inline"> <semantics> <mrow> <mn>8</mn> <mspace width="0.277778em"></mspace> <mrow> <mi mathvariant="sans-serif">&#181;</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics> </math> </inline-formula> for signal SPP localized inside <inline-formula> <math display="inline"> <semantics> <mrow> <mn>20</mn> <mspace width="0.277778em"></mspace> <mi>nm</mi> </mrow> </semantics> </math> </inline-formula> graphene stub loaded with core&#8722;shell InAs/ZnS NW.
topic graphene nanoplasmonics
graphene waveguide
core–shell nanowires
surface plasmon–polaritons
nonlinear plasmon–exciton interactions
fdtd method
url https://www.mdpi.com/2079-4991/10/1/122
work_keys_str_mv AT mikhailyugubin allplasmonicswitchingeffectinthegraphenenanostructurescontainingquantumemitters
AT andreyyuleksin allplasmonicswitchingeffectinthegraphenenanostructurescontainingquantumemitters
AT alexandervshesterikov allplasmonicswitchingeffectinthegraphenenanostructurescontainingquantumemitters
AT alexeivprokhorov allplasmonicswitchingeffectinthegraphenenanostructurescontainingquantumemitters
AT valentynsvolkov allplasmonicswitchingeffectinthegraphenenanostructurescontainingquantumemitters
_version_ 1724553175384457216