Summary: | The current demand for remote work, remote teaching and video conferencing has brought a surge not only in network traffic, but unfortunately, in the number of attacks as well. Having reliable, safe and secure functionality of various network services has never been more important. Another serious phenomenon that is apparent these days and that must not be discounted is the growing use of artificial intelligence techniques for carrying out network attacks. To combat these attacks, effective protection methods must also utilize artificial intelligence. Hence, we are introducing a specific neural network-based decision procedure that can be considered for application in any flow characteristic-based network-traffic-handling controller. This decision procedure is based on a convolutional neural network that processes the incoming flow characteristics and provides a decision; the procedure can be understood as a firewall rule. The main advantage of this decision procedure is its depiction process, which has the ability to transform the incoming flow characteristics into a graphical structure. Graphical structures are regarded as very efficient data structures for processing by convolutional neural networks. This article’s main contribution consists of the development and improvement of the depiction process using a genetic algorithm. The results presented at the end of the article show that the decision procedure using an optimized depiction process brings significant improvements in comparison to previous experiments.
|