Therapeutic Effects of Simultaneous Delivery of Nerve Growth Factor mRNA and Protein via Exosomes on Cerebral Ischemia

Stroke is the leading neurological cause of death and disability all over the world, with few effective drugs. Nerve growth factor (NGF) is well known for its multifaceted neuroprotective functions post-ischemia. However, the lack of an efficient approach to systemically deliver bioactive NGF into i...

Full description

Bibliographic Details
Main Authors: Jialei Yang, Shipo Wu, Lihua Hou, Danni Zhu, Shimin Yin, Guodong Yang, Yongjun Wang
Format: Article
Language:English
Published: Elsevier 2020-09-01
Series:Molecular Therapy: Nucleic Acids
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2162253120301748
Description
Summary:Stroke is the leading neurological cause of death and disability all over the world, with few effective drugs. Nerve growth factor (NGF) is well known for its multifaceted neuroprotective functions post-ischemia. However, the lack of an efficient approach to systemically deliver bioactive NGF into ischemic region hinders its clinical application. In this study, we engineered the exosomes with RVG peptide on the surface for neuron targeting and loaded NGF into exosomes simultaneously, with the resultant exosomes denoted as NGF@ExoRVG. By systemic administration of NGF@ExoRVG, NGF was efficiently delivered into ischemic cortex, with a burst release of encapsulated NGF protein and de novo NGF protein translated from the delivered mRNA. Moreover, NGF@ExoRVG was found to be highly stable for preservation and function efficiently for a long time in vivo. Functional study revealed that the delivered NGF reduced inflammation by reshaping microglia polarization, promoted cell survival, and increased the population of doublecortin-positive cells, a marker of neuroblast. The results of our study suggest the potential therapeutic effects of NGF@ExoRVG for stroke. Moreover, the strategy proposed in our study may shed light on the clinical application of other neurotrophic factors for central nervous system diseases.
ISSN:2162-2531