CO₂ geological sequestration in heterogeneous binary media: Effects of geological and operational conditions
Realistic representation of subsurface heterogeneity is essential to better understand and effectively predict the migration and trapping patterns of carbon dioxide (CO2 ) during geological carbon sequestration (GCS). Many candidate aquifers for GCS have sedimentary architectures which reflect fluvial...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Yandy Scientific Press
2020-12-01
|
Series: | Advances in Geo-Energy Research |
Subjects: | |
Online Access: | https://www.yandy-ager.com/index.php/ager/article/view/277 |
id |
doaj-0b9e9044a6ba4d30b32e0078af0136c1 |
---|---|
record_format |
Article |
spelling |
doaj-0b9e9044a6ba4d30b32e0078af0136c12021-01-08T02:45:32ZengYandy Scientific PressAdvances in Geo-Energy Research2208-598X2208-598X2020-12-014439240510.46690/ager.2020.04.05CO₂ geological sequestration in heterogeneous binary media: Effects of geological and operational conditionsReza Ershadnia0Corey D. Wallace1Mohamad Reza Soltanian2https://orcid.org/0000-0002-5126-0668Department of Geology, University of Cincinnati, Cincinnati, OH, USADepartment of Geology, University of Cincinnati, Cincinnati, OH, USADepartment of Geology, University of Cincinnati, Cincinnati, OH, USARealistic representation of subsurface heterogeneity is essential to better understand and effectively predict the migration and trapping patterns of carbon dioxide (CO2 ) during geological carbon sequestration (GCS). Many candidate aquifers for GCS have sedimentary architectures which reflect fluvial deposition, where coarser-grained facies with higher-permeability (e.g., sandstone) are juxtaposed within finer-grained facies with lower-permeability (e.g., shale). Because the subsurface is difficult to access and sample, geostatistical methods are often used to model the spatial distribution of geological facies across different scales. We use a transition-probability based approach to simulate heterogeneous systems with binary facies distributions and the resulting petrophysical properties at the field scale. The approach produces heterogeneity fields which honor observable and physical facies attributes (e.g., volumetric proportions, mean lengths, and juxtapositional tendencies). Further, we use the associated facies-dependent properties for both relative permeability and capillary pressure relations and their hysteretic behavior. Heterogeneous facies models are used to investigate the sensitivity of different trapping mechanisms (i.e., dissolution, residual trapping) as well as CO2 plume dynamics to variability in (1) the spatial organization and connectivity of sedimentary facies types; (2) aquifer temperature; (3) CO2 injection period; (4) perforation length; and (5) the level of impurity, represented here as methane (CH4 ) present in injected CO2 streams. Model results show that the magnitudes of residual and solubility trapping are reduced by increasing the percentage and degree of connectivity of high-permeability facies. An increase in aquifer temperature leads to a decrease in residual trapping and an increase in solubility trapping. Results also reveal that for a given volume of injected CO2 , shorter injection times yield higher total amounts of trapped CO2 . Similarly, wells perforated over a shorter thickness of the aquifer contribute to an increase in both residual and solubility trapping. We also find that increased CH4 concentrations in the injected CO2 streams decrease residual trapping while increasing solubility trapping. This effect is more pronounced at shallower depths, where the pressure and temperature of the aquifer are lower.https://www.yandy-ager.com/index.php/ager/article/view/277binary mediaaquifer heterogeneitytransition-probabilityfacies connectivityperforation lengthimpurity in co2 streaminjection periodaquifer temperature |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Reza Ershadnia Corey D. Wallace Mohamad Reza Soltanian |
spellingShingle |
Reza Ershadnia Corey D. Wallace Mohamad Reza Soltanian CO₂ geological sequestration in heterogeneous binary media: Effects of geological and operational conditions Advances in Geo-Energy Research binary media aquifer heterogeneity transition-probability facies connectivity perforation length impurity in co2 stream injection period aquifer temperature |
author_facet |
Reza Ershadnia Corey D. Wallace Mohamad Reza Soltanian |
author_sort |
Reza Ershadnia |
title |
CO₂ geological sequestration in heterogeneous binary media: Effects of geological and operational conditions |
title_short |
CO₂ geological sequestration in heterogeneous binary media: Effects of geological and operational conditions |
title_full |
CO₂ geological sequestration in heterogeneous binary media: Effects of geological and operational conditions |
title_fullStr |
CO₂ geological sequestration in heterogeneous binary media: Effects of geological and operational conditions |
title_full_unstemmed |
CO₂ geological sequestration in heterogeneous binary media: Effects of geological and operational conditions |
title_sort |
co₂ geological sequestration in heterogeneous binary media: effects of geological and operational conditions |
publisher |
Yandy Scientific Press |
series |
Advances in Geo-Energy Research |
issn |
2208-598X 2208-598X |
publishDate |
2020-12-01 |
description |
Realistic representation of subsurface heterogeneity is essential to better understand and effectively predict the migration and trapping patterns of carbon dioxide (CO2 ) during geological carbon sequestration (GCS). Many candidate aquifers for GCS have sedimentary architectures which reflect fluvial deposition, where coarser-grained facies with higher-permeability (e.g., sandstone) are juxtaposed within finer-grained facies with lower-permeability (e.g., shale). Because the subsurface is difficult to access and sample, geostatistical methods are often used to model the spatial distribution of geological facies across different scales. We use a transition-probability based approach to simulate heterogeneous systems with binary facies distributions and the resulting petrophysical properties at the field scale. The approach produces heterogeneity fields which honor observable and physical facies attributes (e.g., volumetric proportions, mean lengths, and juxtapositional tendencies). Further, we use the associated facies-dependent properties for both relative permeability and capillary pressure relations and their hysteretic behavior. Heterogeneous facies models are used to investigate the sensitivity of different trapping mechanisms (i.e., dissolution, residual trapping) as well as CO2 plume dynamics to variability in (1) the spatial organization and connectivity of sedimentary facies types; (2) aquifer temperature; (3) CO2 injection period; (4) perforation length; and (5) the level of impurity, represented here as methane (CH4 ) present in injected CO2 streams. Model results show that the magnitudes of residual and solubility trapping are reduced by increasing the percentage and degree of connectivity of high-permeability facies. An increase in aquifer temperature leads to a decrease in residual trapping and an increase in solubility trapping. Results also reveal that for a given volume of injected CO2 , shorter injection times yield higher total amounts of trapped CO2 . Similarly, wells perforated over a shorter thickness of the aquifer contribute to an increase in both residual and solubility trapping. We also find that increased CH4 concentrations in the injected CO2 streams decrease residual trapping while increasing solubility trapping. This effect is more pronounced at shallower depths, where the pressure and temperature of the aquifer are lower. |
topic |
binary media aquifer heterogeneity transition-probability facies connectivity perforation length impurity in co2 stream injection period aquifer temperature |
url |
https://www.yandy-ager.com/index.php/ager/article/view/277 |
work_keys_str_mv |
AT rezaershadnia co2geologicalsequestrationinheterogeneousbinarymediaeffectsofgeologicalandoperationalconditions AT coreydwallace co2geologicalsequestrationinheterogeneousbinarymediaeffectsofgeologicalandoperationalconditions AT mohamadrezasoltanian co2geologicalsequestrationinheterogeneousbinarymediaeffectsofgeologicalandoperationalconditions |
_version_ |
1724345677086982144 |