Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain

Let V be a valuation domain and let A=V+εV be a dual valuation domain. We propose a method for computing a strong Gröbner basis in R=A[x1,…,xn]; given polynomials f1,…,fs∈R, a method for computing a generating set for Syz(f1,…,fs)={(h1,…,hs)∈Rs∣h1f1+⋯+hsfs=0} is given; and, finally, given two ideals...

Full description

Bibliographic Details
Main Authors: Regis F. Babindamana, Andre S. E. Mialebama Bouesso
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2018/9316901
id doaj-0ba3c9e1fdd0473ebdd8b9c01710120e
record_format Article
spelling doaj-0ba3c9e1fdd0473ebdd8b9c01710120e2020-11-25T00:58:55ZengHindawi LimitedJournal of Mathematics2314-46292314-47852018-01-01201810.1155/2018/93169019316901Intersection of Ideals in a Polynomial Ring over a Dual Valuation DomainRegis F. Babindamana0Andre S. E. Mialebama Bouesso1Université Marien Ngouabi, Faculté des Sciences et Technique Département de Mathématiques, BP: 69, Brazzaville, CongoUniversité Marien Ngouabi, Faculté des Sciences et Technique Département de Mathématiques, BP: 69, Brazzaville, CongoLet V be a valuation domain and let A=V+εV be a dual valuation domain. We propose a method for computing a strong Gröbner basis in R=A[x1,…,xn]; given polynomials f1,…,fs∈R, a method for computing a generating set for Syz(f1,…,fs)={(h1,…,hs)∈Rs∣h1f1+⋯+hsfs=0} is given; and, finally, given two ideals I=〈f1,…,fs〉 and J=〈g1,…,gr〉 of R, we propose an algorithm for computing a generating set for I∩J.http://dx.doi.org/10.1155/2018/9316901
collection DOAJ
language English
format Article
sources DOAJ
author Regis F. Babindamana
Andre S. E. Mialebama Bouesso
spellingShingle Regis F. Babindamana
Andre S. E. Mialebama Bouesso
Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain
Journal of Mathematics
author_facet Regis F. Babindamana
Andre S. E. Mialebama Bouesso
author_sort Regis F. Babindamana
title Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain
title_short Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain
title_full Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain
title_fullStr Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain
title_full_unstemmed Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain
title_sort intersection of ideals in a polynomial ring over a dual valuation domain
publisher Hindawi Limited
series Journal of Mathematics
issn 2314-4629
2314-4785
publishDate 2018-01-01
description Let V be a valuation domain and let A=V+εV be a dual valuation domain. We propose a method for computing a strong Gröbner basis in R=A[x1,…,xn]; given polynomials f1,…,fs∈R, a method for computing a generating set for Syz(f1,…,fs)={(h1,…,hs)∈Rs∣h1f1+⋯+hsfs=0} is given; and, finally, given two ideals I=〈f1,…,fs〉 and J=〈g1,…,gr〉 of R, we propose an algorithm for computing a generating set for I∩J.
url http://dx.doi.org/10.1155/2018/9316901
work_keys_str_mv AT regisfbabindamana intersectionofidealsinapolynomialringoveradualvaluationdomain
AT andresemialebamabouesso intersectionofidealsinapolynomialringoveradualvaluationdomain
_version_ 1725219791623421952