Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain
Let V be a valuation domain and let A=V+εV be a dual valuation domain. We propose a method for computing a strong Gröbner basis in R=A[x1,…,xn]; given polynomials f1,…,fs∈R, a method for computing a generating set for Syz(f1,…,fs)={(h1,…,hs)∈Rs∣h1f1+⋯+hsfs=0} is given; and, finally, given two ideals...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2018/9316901 |
id |
doaj-0ba3c9e1fdd0473ebdd8b9c01710120e |
---|---|
record_format |
Article |
spelling |
doaj-0ba3c9e1fdd0473ebdd8b9c01710120e2020-11-25T00:58:55ZengHindawi LimitedJournal of Mathematics2314-46292314-47852018-01-01201810.1155/2018/93169019316901Intersection of Ideals in a Polynomial Ring over a Dual Valuation DomainRegis F. Babindamana0Andre S. E. Mialebama Bouesso1Université Marien Ngouabi, Faculté des Sciences et Technique Département de Mathématiques, BP: 69, Brazzaville, CongoUniversité Marien Ngouabi, Faculté des Sciences et Technique Département de Mathématiques, BP: 69, Brazzaville, CongoLet V be a valuation domain and let A=V+εV be a dual valuation domain. We propose a method for computing a strong Gröbner basis in R=A[x1,…,xn]; given polynomials f1,…,fs∈R, a method for computing a generating set for Syz(f1,…,fs)={(h1,…,hs)∈Rs∣h1f1+⋯+hsfs=0} is given; and, finally, given two ideals I=〈f1,…,fs〉 and J=〈g1,…,gr〉 of R, we propose an algorithm for computing a generating set for I∩J.http://dx.doi.org/10.1155/2018/9316901 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Regis F. Babindamana Andre S. E. Mialebama Bouesso |
spellingShingle |
Regis F. Babindamana Andre S. E. Mialebama Bouesso Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain Journal of Mathematics |
author_facet |
Regis F. Babindamana Andre S. E. Mialebama Bouesso |
author_sort |
Regis F. Babindamana |
title |
Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain |
title_short |
Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain |
title_full |
Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain |
title_fullStr |
Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain |
title_full_unstemmed |
Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain |
title_sort |
intersection of ideals in a polynomial ring over a dual valuation domain |
publisher |
Hindawi Limited |
series |
Journal of Mathematics |
issn |
2314-4629 2314-4785 |
publishDate |
2018-01-01 |
description |
Let V be a valuation domain and let A=V+εV be a dual valuation domain. We propose a method for computing a strong Gröbner basis in R=A[x1,…,xn]; given polynomials f1,…,fs∈R, a method for computing a generating set for Syz(f1,…,fs)={(h1,…,hs)∈Rs∣h1f1+⋯+hsfs=0} is given; and, finally, given two ideals I=〈f1,…,fs〉 and J=〈g1,…,gr〉 of R, we propose an algorithm for computing a generating set for I∩J. |
url |
http://dx.doi.org/10.1155/2018/9316901 |
work_keys_str_mv |
AT regisfbabindamana intersectionofidealsinapolynomialringoveradualvaluationdomain AT andresemialebamabouesso intersectionofidealsinapolynomialringoveradualvaluationdomain |
_version_ |
1725219791623421952 |