Characterization of 30 $$^{76}$$ 76 Ge enriched Broad Energy Ge detectors for GERDA Phase II

Abstract The GERmanium Detector Array (Gerda) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double-beta decay of $$^{76}$$ 76 Ge into $$^{76}$$ 76 Se+2e$$^-$$ - . Gerda has been conceived in two phases. Phase II, which sta...

Full description

Bibliographic Details
Main Authors: M. Agostini, A. M. Bakalyarov, E. Andreotti, M. Balata, I. Barabanov, L. Baudis, N. Barros, C. Bauer, E. Bellotti, S. Belogurov, G. Benato, A. Bettini, L. Bezrukov, T. Bode, D. Borowicz, V. Brudanin, R. Brugnera, D. Budjáš, A. Caldwell, C. Cattadori, A. Chernogorov, V. D’Andrea, E. V. Demidova, N. Di Marco, A. Domula, E. Doroshkevich, V. Egorov, R. Falkenstein, K. Freund, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, A. Hegai, M. Heisel, S. Hemmer, R. Hiller, W. Hofmann, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, T. Kihm, I. V. Kirpichnikov, A. Kirsch, A. Kish, A. Klimenko, R. Kneißl, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, V. V. Kuzminov, M. Laubenstein, A. Lazzaro, B. Lehnert, Y. Liao, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, G. Marissens, M. Miloradovic, R. Mingazheva, M. Misiaszek, P. Moseev, I. Nemchenok, K. Panas, L. Pandola, K. Pelczar, A. Pullia, C. Ransom, S. Riboldi, N. Rumyantseva, C. Sada, F. Salamida, M. Salathe, C. Schmitt, B. Schneider, S. Schönert, A.-K. Schütz, O. Schulz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, H. Simgen, A. Smolnikov, L. Stanco, L. Vanhoefer, A. A. Vasenko, A. Veresnikova, K. von Sturm, V. Wagner, A. Wegmann, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. J. Zsigmond, K. Zuber, G. Zuzel, GERDA Collaboration
Format: Article
Language:English
Published: SpringerOpen 2019-11-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-019-7353-8
id doaj-0be83c1e9d19421fbece90e02ed87d49
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author M. Agostini
A. M. Bakalyarov
E. Andreotti
M. Balata
I. Barabanov
L. Baudis
N. Barros
C. Bauer
E. Bellotti
S. Belogurov
G. Benato
A. Bettini
L. Bezrukov
T. Bode
D. Borowicz
V. Brudanin
R. Brugnera
D. Budjáš
A. Caldwell
C. Cattadori
A. Chernogorov
V. D’Andrea
E. V. Demidova
N. Di Marco
A. Domula
E. Doroshkevich
V. Egorov
R. Falkenstein
K. Freund
A. Gangapshev
A. Garfagnini
C. Gooch
P. Grabmayr
V. Gurentsov
K. Gusev
J. Hakenmüller
A. Hegai
M. Heisel
S. Hemmer
R. Hiller
W. Hofmann
M. Hult
L. V. Inzhechik
J. Janicskó Csáthy
J. Jochum
M. Junker
V. Kazalov
Y. Kermaïdic
T. Kihm
I. V. Kirpichnikov
A. Kirsch
A. Kish
A. Klimenko
R. Kneißl
K. T. Knöpfle
O. Kochetov
V. N. Kornoukhov
V. V. Kuzminov
M. Laubenstein
A. Lazzaro
B. Lehnert
Y. Liao
M. Lindner
I. Lippi
A. Lubashevskiy
B. Lubsandorzhiev
G. Lutter
C. Macolino
B. Majorovits
W. Maneschg
G. Marissens
M. Miloradovic
R. Mingazheva
M. Misiaszek
P. Moseev
I. Nemchenok
K. Panas
L. Pandola
K. Pelczar
A. Pullia
C. Ransom
S. Riboldi
N. Rumyantseva
C. Sada
F. Salamida
M. Salathe
C. Schmitt
B. Schneider
S. Schönert
A.-K. Schütz
O. Schulz
B. Schwingenheuer
O. Selivanenko
E. Shevchik
M. Shirchenko
H. Simgen
A. Smolnikov
L. Stanco
L. Vanhoefer
A. A. Vasenko
A. Veresnikova
K. von Sturm
V. Wagner
A. Wegmann
T. Wester
C. Wiesinger
M. Wojcik
E. Yanovich
I. Zhitnikov
S. V. Zhukov
D. Zinatulina
A. J. Zsigmond
K. Zuber
G. Zuzel
GERDA Collaboration
spellingShingle M. Agostini
A. M. Bakalyarov
E. Andreotti
M. Balata
I. Barabanov
L. Baudis
N. Barros
C. Bauer
E. Bellotti
S. Belogurov
G. Benato
A. Bettini
L. Bezrukov
T. Bode
D. Borowicz
V. Brudanin
R. Brugnera
D. Budjáš
A. Caldwell
C. Cattadori
A. Chernogorov
V. D’Andrea
E. V. Demidova
N. Di Marco
A. Domula
E. Doroshkevich
V. Egorov
R. Falkenstein
K. Freund
A. Gangapshev
A. Garfagnini
C. Gooch
P. Grabmayr
V. Gurentsov
K. Gusev
J. Hakenmüller
A. Hegai
M. Heisel
S. Hemmer
R. Hiller
W. Hofmann
M. Hult
L. V. Inzhechik
J. Janicskó Csáthy
J. Jochum
M. Junker
V. Kazalov
Y. Kermaïdic
T. Kihm
I. V. Kirpichnikov
A. Kirsch
A. Kish
A. Klimenko
R. Kneißl
K. T. Knöpfle
O. Kochetov
V. N. Kornoukhov
V. V. Kuzminov
M. Laubenstein
A. Lazzaro
B. Lehnert
Y. Liao
M. Lindner
I. Lippi
A. Lubashevskiy
B. Lubsandorzhiev
G. Lutter
C. Macolino
B. Majorovits
W. Maneschg
G. Marissens
M. Miloradovic
R. Mingazheva
M. Misiaszek
P. Moseev
I. Nemchenok
K. Panas
L. Pandola
K. Pelczar
A. Pullia
C. Ransom
S. Riboldi
N. Rumyantseva
C. Sada
F. Salamida
M. Salathe
C. Schmitt
B. Schneider
S. Schönert
A.-K. Schütz
O. Schulz
B. Schwingenheuer
O. Selivanenko
E. Shevchik
M. Shirchenko
H. Simgen
A. Smolnikov
L. Stanco
L. Vanhoefer
A. A. Vasenko
A. Veresnikova
K. von Sturm
V. Wagner
A. Wegmann
T. Wester
C. Wiesinger
M. Wojcik
E. Yanovich
I. Zhitnikov
S. V. Zhukov
D. Zinatulina
A. J. Zsigmond
K. Zuber
G. Zuzel
GERDA Collaboration
Characterization of 30 $$^{76}$$ 76 Ge enriched Broad Energy Ge detectors for GERDA Phase II
European Physical Journal C: Particles and Fields
author_facet M. Agostini
A. M. Bakalyarov
E. Andreotti
M. Balata
I. Barabanov
L. Baudis
N. Barros
C. Bauer
E. Bellotti
S. Belogurov
G. Benato
A. Bettini
L. Bezrukov
T. Bode
D. Borowicz
V. Brudanin
R. Brugnera
D. Budjáš
A. Caldwell
C. Cattadori
A. Chernogorov
V. D’Andrea
E. V. Demidova
N. Di Marco
A. Domula
E. Doroshkevich
V. Egorov
R. Falkenstein
K. Freund
A. Gangapshev
A. Garfagnini
C. Gooch
P. Grabmayr
V. Gurentsov
K. Gusev
J. Hakenmüller
A. Hegai
M. Heisel
S. Hemmer
R. Hiller
W. Hofmann
M. Hult
L. V. Inzhechik
J. Janicskó Csáthy
J. Jochum
M. Junker
V. Kazalov
Y. Kermaïdic
T. Kihm
I. V. Kirpichnikov
A. Kirsch
A. Kish
A. Klimenko
R. Kneißl
K. T. Knöpfle
O. Kochetov
V. N. Kornoukhov
V. V. Kuzminov
M. Laubenstein
A. Lazzaro
B. Lehnert
Y. Liao
M. Lindner
I. Lippi
A. Lubashevskiy
B. Lubsandorzhiev
G. Lutter
C. Macolino
B. Majorovits
W. Maneschg
G. Marissens
M. Miloradovic
R. Mingazheva
M. Misiaszek
P. Moseev
I. Nemchenok
K. Panas
L. Pandola
K. Pelczar
A. Pullia
C. Ransom
S. Riboldi
N. Rumyantseva
C. Sada
F. Salamida
M. Salathe
C. Schmitt
B. Schneider
S. Schönert
A.-K. Schütz
O. Schulz
B. Schwingenheuer
O. Selivanenko
E. Shevchik
M. Shirchenko
H. Simgen
A. Smolnikov
L. Stanco
L. Vanhoefer
A. A. Vasenko
A. Veresnikova
K. von Sturm
V. Wagner
A. Wegmann
T. Wester
C. Wiesinger
M. Wojcik
E. Yanovich
I. Zhitnikov
S. V. Zhukov
D. Zinatulina
A. J. Zsigmond
K. Zuber
G. Zuzel
GERDA Collaboration
author_sort M. Agostini
title Characterization of 30 $$^{76}$$ 76 Ge enriched Broad Energy Ge detectors for GERDA Phase II
title_short Characterization of 30 $$^{76}$$ 76 Ge enriched Broad Energy Ge detectors for GERDA Phase II
title_full Characterization of 30 $$^{76}$$ 76 Ge enriched Broad Energy Ge detectors for GERDA Phase II
title_fullStr Characterization of 30 $$^{76}$$ 76 Ge enriched Broad Energy Ge detectors for GERDA Phase II
title_full_unstemmed Characterization of 30 $$^{76}$$ 76 Ge enriched Broad Energy Ge detectors for GERDA Phase II
title_sort characterization of 30 $$^{76}$$ 76 ge enriched broad energy ge detectors for gerda phase ii
publisher SpringerOpen
series European Physical Journal C: Particles and Fields
issn 1434-6044
1434-6052
publishDate 2019-11-01
description Abstract The GERmanium Detector Array (Gerda) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double-beta decay of $$^{76}$$ 76 Ge into $$^{76}$$ 76 Se+2e$$^-$$ - . Gerda has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new 76Ge enriched detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the Hades underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for Gerda Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the accuracy of pulse shape simulation codes.
url http://link.springer.com/article/10.1140/epjc/s10052-019-7353-8
work_keys_str_mv AT magostini characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT ambakalyarov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT eandreotti characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT mbalata characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT ibarabanov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT lbaudis characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT nbarros characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT cbauer characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT ebellotti characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT sbelogurov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT gbenato characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT abettini characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT lbezrukov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT tbode characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT dborowicz characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT vbrudanin characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT rbrugnera characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT dbudjas characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT acaldwell characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT ccattadori characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT achernogorov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT vdandrea characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT evdemidova characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT ndimarco characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT adomula characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT edoroshkevich characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT vegorov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT rfalkenstein characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT kfreund characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT agangapshev characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT agarfagnini characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT cgooch characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT pgrabmayr characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT vgurentsov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT kgusev characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT jhakenmuller characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT ahegai characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT mheisel characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT shemmer characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT rhiller characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT whofmann characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT mhult characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT lvinzhechik characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT jjanicskocsathy characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT jjochum characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT mjunker characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT vkazalov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT ykermaidic characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT tkihm characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT ivkirpichnikov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT akirsch characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT akish characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT aklimenko characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT rkneißl characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT ktknopfle characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT okochetov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT vnkornoukhov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT vvkuzminov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT mlaubenstein characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT alazzaro characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT blehnert characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT yliao characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT mlindner characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT ilippi characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT alubashevskiy characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT blubsandorzhiev characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT glutter characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT cmacolino characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT bmajorovits characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT wmaneschg characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT gmarissens characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT mmiloradovic characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT rmingazheva characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT mmisiaszek characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT pmoseev characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT inemchenok characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT kpanas characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT lpandola characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT kpelczar characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT apullia characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT cransom characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT sriboldi characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT nrumyantseva characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT csada characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT fsalamida characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT msalathe characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT cschmitt characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT bschneider characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT sschonert characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT akschutz characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT oschulz characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT bschwingenheuer characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT oselivanenko characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT eshevchik characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT mshirchenko characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT hsimgen characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT asmolnikov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT lstanco characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT lvanhoefer characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT aavasenko characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT averesnikova characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT kvonsturm characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT vwagner characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT awegmann characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT twester characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT cwiesinger characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT mwojcik characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT eyanovich characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT izhitnikov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT svzhukov characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT dzinatulina characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT ajzsigmond characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT kzuber characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT gzuzel characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
AT gerdacollaboration characterizationof307676geenrichedbroadenergygedetectorsforgerdaphaseii
_version_ 1725830049121173504
spelling doaj-0be83c1e9d19421fbece90e02ed87d492020-11-24T22:04:11ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522019-11-01791112410.1140/epjc/s10052-019-7353-8Characterization of 30 $$^{76}$$ 76 Ge enriched Broad Energy Ge detectors for GERDA Phase IIM. Agostini0A. M. Bakalyarov1E. Andreotti2M. Balata3I. Barabanov4L. Baudis5N. Barros6C. Bauer7E. Bellotti8S. Belogurov9G. Benato10A. Bettini11L. Bezrukov12T. Bode13D. Borowicz14V. Brudanin15R. Brugnera16D. Budjáš17A. Caldwell18C. Cattadori19A. Chernogorov20V. D’Andrea21E. V. Demidova22N. Di Marco23A. Domula24E. Doroshkevich25V. Egorov26R. Falkenstein27K. Freund28A. Gangapshev29A. Garfagnini30C. Gooch31P. Grabmayr32V. Gurentsov33K. Gusev34J. Hakenmüller35A. Hegai36M. Heisel37S. Hemmer38R. Hiller39W. Hofmann40M. Hult41L. V. Inzhechik42J. Janicskó Csáthy43J. Jochum44M. Junker45V. Kazalov46Y. Kermaïdic47T. Kihm48I. V. Kirpichnikov49A. Kirsch50A. Kish51A. Klimenko52R. Kneißl53K. T. Knöpfle54O. Kochetov55V. N. Kornoukhov56V. V. Kuzminov57M. Laubenstein58A. Lazzaro59B. Lehnert60Y. Liao61M. Lindner62I. Lippi63A. Lubashevskiy64B. Lubsandorzhiev65G. Lutter66C. Macolino67B. Majorovits68W. Maneschg69G. Marissens70M. Miloradovic71R. Mingazheva72M. Misiaszek73P. Moseev74I. Nemchenok75K. Panas76L. Pandola77K. Pelczar78A. Pullia79C. Ransom80S. Riboldi81N. Rumyantseva82C. Sada83F. Salamida84M. Salathe85C. Schmitt86B. Schneider87S. Schönert88A.-K. Schütz89O. Schulz90B. Schwingenheuer91O. Selivanenko92E. Shevchik93M. Shirchenko94H. Simgen95A. Smolnikov96L. Stanco97L. Vanhoefer98A. A. Vasenko99A. Veresnikova100K. von Sturm101V. Wagner102A. Wegmann103T. Wester104C. Wiesinger105M. Wojcik106E. Yanovich107I. Zhitnikov108S. V. Zhukov109D. Zinatulina110A. J. Zsigmond111K. Zuber112G. Zuzel113GERDA Collaboration114Physik Department and Excellence Cluster Universe, Technische Universität MünchenNational Research Centre “Kurchatov Institute”European Commission, JRC-GeelINFN Laboratori Nazionali del Gran Sasso, LNGSInstitute for Nuclear Research of the Russian Academy of SciencesPhysik Institut der Universität ZürichInstitut für Kern- und Teilchenphysik, Technische Universität DresdenMax-Planck-Institut für KernphysikDipartimento di Fisica, Università Milano BicoccaInstitute for Nuclear Research of the Russian Academy of SciencesPhysik Institut der Universität ZürichDipartimento di Fisica e Astronomia dell’Università di PadovaInstitute for Nuclear Research of the Russian Academy of SciencesPhysik Department and Excellence Cluster Universe, Technische Universität MünchenJoint Institute for Nuclear ResearchJoint Institute for Nuclear ResearchDipartimento di Fisica e Astronomia dell’Università di PadovaPhysik Department and Excellence Cluster Universe, Technische Universität MünchenMax-Planck-Institut für PhysikINFN Milano BicoccaInstitute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell’AquilaInstitute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”INFN Laboratori Nazionali del Gran Sasso, LNGSInstitut für Kern- und Teilchenphysik, Technische Universität DresdenInstitute for Nuclear Research of the Russian Academy of SciencesJoint Institute for Nuclear ResearchPhysikalisches Institut, Eberhard Karls Universität TübingenPhysikalisches Institut, Eberhard Karls Universität TübingenMax-Planck-Institut für KernphysikDipartimento di Fisica e Astronomia dell’Università di PadovaMax-Planck-Institut für PhysikPhysikalisches Institut, Eberhard Karls Universität TübingenInstitute for Nuclear Research of the Russian Academy of SciencesJoint Institute for Nuclear ResearchMax-Planck-Institut für KernphysikPhysikalisches Institut, Eberhard Karls Universität TübingenMax-Planck-Institut für KernphysikINFN PadovaPhysik Institut der Universität ZürichMax-Planck-Institut für KernphysikEuropean Commission, JRC-GeelInstitute for Nuclear Research of the Russian Academy of SciencesPhysik Department and Excellence Cluster Universe, Technische Universität MünchenPhysikalisches Institut, Eberhard Karls Universität TübingenINFN Laboratori Nazionali del Gran Sasso, LNGSInstitute for Nuclear Research of the Russian Academy of SciencesMax-Planck-Institut für KernphysikMax-Planck-Institut für KernphysikInstitute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”Max-Planck-Institut für KernphysikPhysik Institut der Universität ZürichJoint Institute for Nuclear ResearchMax-Planck-Institut für PhysikMax-Planck-Institut für KernphysikJoint Institute for Nuclear ResearchInstitute for Nuclear Research of the Russian Academy of SciencesInstitute for Nuclear Research of the Russian Academy of SciencesINFN Laboratori Nazionali del Gran Sasso, LNGSPhysik Department and Excellence Cluster Universe, Technische Universität MünchenInstitut für Kern- und Teilchenphysik, Technische Universität DresdenMax-Planck-Institut für PhysikMax-Planck-Institut für KernphysikINFN PadovaJoint Institute for Nuclear ResearchInstitute for Nuclear Research of the Russian Academy of SciencesEuropean Commission, JRC-GeelINFN Laboratori Nazionali del Gran Sasso, LNGSMax-Planck-Institut für PhysikMax-Planck-Institut für KernphysikEuropean Commission, JRC-GeelPhysik Institut der Universität ZürichPhysik Institut der Universität ZürichInstitute of Physics, Jagiellonian UniversityInstitute for Nuclear Research of the Russian Academy of SciencesJoint Institute for Nuclear ResearchInstitute of Physics, Jagiellonian UniversityINFN Laboratori Nazionali del SudINFN Laboratori Nazionali del Gran Sasso, LNGSDipartimento di Fisica, Università degli Studi di Milano e INFN MilanoPhysik Institut der Universität ZürichDipartimento di Fisica, Università degli Studi di Milano e INFN MilanoJoint Institute for Nuclear ResearchDipartimento di Fisica e Astronomia dell’Università di PadovaINFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell’AquilaMax-Planck-Institut für KernphysikPhysikalisches Institut, Eberhard Karls Universität TübingenInstitut für Kern- und Teilchenphysik, Technische Universität DresdenPhysik Department and Excellence Cluster Universe, Technische Universität MünchenPhysikalisches Institut, Eberhard Karls Universität TübingenMax-Planck-Institut für PhysikMax-Planck-Institut für KernphysikInstitute for Nuclear Research of the Russian Academy of SciencesJoint Institute for Nuclear ResearchJoint Institute for Nuclear ResearchMax-Planck-Institut für KernphysikJoint Institute for Nuclear ResearchINFN PadovaMax-Planck-Institut für PhysikInstitute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”Institute for Nuclear Research of the Russian Academy of SciencesDipartimento di Fisica e Astronomia dell’Università di PadovaMax-Planck-Institut für KernphysikMax-Planck-Institut für KernphysikInstitut für Kern- und Teilchenphysik, Technische Universität DresdenPhysik Department and Excellence Cluster Universe, Technische Universität MünchenInstitute of Physics, Jagiellonian UniversityInstitute for Nuclear Research of the Russian Academy of SciencesJoint Institute for Nuclear ResearchNational Research Centre “Kurchatov Institute”Joint Institute for Nuclear ResearchMax-Planck-Institut für PhysikInstitut für Kern- und Teilchenphysik, Technische Universität DresdenInstitute of Physics, Jagiellonian UniversityINFN Laboratori Nazionali del Gran Sasso, LNGSAbstract The GERmanium Detector Array (Gerda) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double-beta decay of $$^{76}$$ 76 Ge into $$^{76}$$ 76 Se+2e$$^-$$ - . Gerda has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new 76Ge enriched detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the Hades underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for Gerda Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the accuracy of pulse shape simulation codes.http://link.springer.com/article/10.1140/epjc/s10052-019-7353-8