Embracing Their Prey at That Dark Hour: Common Cuttlefish (Sepia officinalis) Can Hunt in Nighttime Light Conditions
Cuttlefish are highly efficient predators, which strongly rely on their anterior binocular visual field for hunting and prey capture. Their complex eyes possess adaptations for low light conditions. Recently, it was discovered that they display camouflaging behavior at night, perhaps to avoid detect...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-06-01
|
Series: | Frontiers in Physiology |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fphys.2020.00525/full |
id |
doaj-0c13da6595734a3b97786ab924f193bd |
---|---|
record_format |
Article |
spelling |
doaj-0c13da6595734a3b97786ab924f193bd2020-11-25T02:54:04ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2020-06-011110.3389/fphys.2020.00525512588Embracing Their Prey at That Dark Hour: Common Cuttlefish (Sepia officinalis) Can Hunt in Nighttime Light ConditionsMelanie Brauckhoff0Melanie Brauckhoff1Magnus Wahlberg2Jens Ådne Rekkedal Haga3Hans Erik Karlsen4Maria Wilson5Maria Wilson6Maria Wilson7Department of Biology, University of Southern Denmark, Odense, DenmarkThe Fisheries and Maritime Museum, Esbjerg, DenmarkDepartment of Biology, University of Southern Denmark, Odense, DenmarkDepartment of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, NorwayDepartment of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, NorwayDepartment of Biology, University of Southern Denmark, Odense, DenmarkDepartment of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, NorwayNIRAS A/S, Aarhus, DenmarkCuttlefish are highly efficient predators, which strongly rely on their anterior binocular visual field for hunting and prey capture. Their complex eyes possess adaptations for low light conditions. Recently, it was discovered that they display camouflaging behavior at night, perhaps to avoid detection by predators, or to increase their nighttime hunting success. This raises the question whether cuttlefish are capable of foraging during nighttime. In the present study, prey capture of the common cuttlefish (Sepia officinalis) was filmed with a high-speed video camera in different light conditions. Experiments were performed in daylight and with near-infrared light sources in two simulated nightlight conditions, as well as in darkness. The body of the common cuttlefish maintained a velocity of less than 0.1 m/s during prey capture, while the tentacles during the seizing phase reached velocities of up to 2.5 m/s and accelerations reached more than 450 m/s2 for single individuals. There was no significant difference between the day and nighttime trials, respectively. In complete darkness, the common cuttlefish was unable to catch any prey. Our results show that the common cuttlefish are capable of catching prey during day- and nighttime light conditions. The common cuttlefish employ similar sensory motor systems and prey capturing techniques during both day- and nighttime conditions.https://www.frontiersin.org/article/10.3389/fphys.2020.00525/fullcephalopod visionSepia officinaliscuttlefishpredatory behaviorlow light vision |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Melanie Brauckhoff Melanie Brauckhoff Magnus Wahlberg Jens Ådne Rekkedal Haga Hans Erik Karlsen Maria Wilson Maria Wilson Maria Wilson |
spellingShingle |
Melanie Brauckhoff Melanie Brauckhoff Magnus Wahlberg Jens Ådne Rekkedal Haga Hans Erik Karlsen Maria Wilson Maria Wilson Maria Wilson Embracing Their Prey at That Dark Hour: Common Cuttlefish (Sepia officinalis) Can Hunt in Nighttime Light Conditions Frontiers in Physiology cephalopod vision Sepia officinalis cuttlefish predatory behavior low light vision |
author_facet |
Melanie Brauckhoff Melanie Brauckhoff Magnus Wahlberg Jens Ådne Rekkedal Haga Hans Erik Karlsen Maria Wilson Maria Wilson Maria Wilson |
author_sort |
Melanie Brauckhoff |
title |
Embracing Their Prey at That Dark Hour: Common Cuttlefish (Sepia officinalis) Can Hunt in Nighttime Light Conditions |
title_short |
Embracing Their Prey at That Dark Hour: Common Cuttlefish (Sepia officinalis) Can Hunt in Nighttime Light Conditions |
title_full |
Embracing Their Prey at That Dark Hour: Common Cuttlefish (Sepia officinalis) Can Hunt in Nighttime Light Conditions |
title_fullStr |
Embracing Their Prey at That Dark Hour: Common Cuttlefish (Sepia officinalis) Can Hunt in Nighttime Light Conditions |
title_full_unstemmed |
Embracing Their Prey at That Dark Hour: Common Cuttlefish (Sepia officinalis) Can Hunt in Nighttime Light Conditions |
title_sort |
embracing their prey at that dark hour: common cuttlefish (sepia officinalis) can hunt in nighttime light conditions |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Physiology |
issn |
1664-042X |
publishDate |
2020-06-01 |
description |
Cuttlefish are highly efficient predators, which strongly rely on their anterior binocular visual field for hunting and prey capture. Their complex eyes possess adaptations for low light conditions. Recently, it was discovered that they display camouflaging behavior at night, perhaps to avoid detection by predators, or to increase their nighttime hunting success. This raises the question whether cuttlefish are capable of foraging during nighttime. In the present study, prey capture of the common cuttlefish (Sepia officinalis) was filmed with a high-speed video camera in different light conditions. Experiments were performed in daylight and with near-infrared light sources in two simulated nightlight conditions, as well as in darkness. The body of the common cuttlefish maintained a velocity of less than 0.1 m/s during prey capture, while the tentacles during the seizing phase reached velocities of up to 2.5 m/s and accelerations reached more than 450 m/s2 for single individuals. There was no significant difference between the day and nighttime trials, respectively. In complete darkness, the common cuttlefish was unable to catch any prey. Our results show that the common cuttlefish are capable of catching prey during day- and nighttime light conditions. The common cuttlefish employ similar sensory motor systems and prey capturing techniques during both day- and nighttime conditions. |
topic |
cephalopod vision Sepia officinalis cuttlefish predatory behavior low light vision |
url |
https://www.frontiersin.org/article/10.3389/fphys.2020.00525/full |
work_keys_str_mv |
AT melaniebrauckhoff embracingtheirpreyatthatdarkhourcommoncuttlefishsepiaofficinaliscanhuntinnighttimelightconditions AT melaniebrauckhoff embracingtheirpreyatthatdarkhourcommoncuttlefishsepiaofficinaliscanhuntinnighttimelightconditions AT magnuswahlberg embracingtheirpreyatthatdarkhourcommoncuttlefishsepiaofficinaliscanhuntinnighttimelightconditions AT jensadnerekkedalhaga embracingtheirpreyatthatdarkhourcommoncuttlefishsepiaofficinaliscanhuntinnighttimelightconditions AT hanserikkarlsen embracingtheirpreyatthatdarkhourcommoncuttlefishsepiaofficinaliscanhuntinnighttimelightconditions AT mariawilson embracingtheirpreyatthatdarkhourcommoncuttlefishsepiaofficinaliscanhuntinnighttimelightconditions AT mariawilson embracingtheirpreyatthatdarkhourcommoncuttlefishsepiaofficinaliscanhuntinnighttimelightconditions AT mariawilson embracingtheirpreyatthatdarkhourcommoncuttlefishsepiaofficinaliscanhuntinnighttimelightconditions |
_version_ |
1724722678976217088 |