Identification and Characterization of a Novel IL-4 Receptor α Chain (IL-4Rα) Antagonist to Inhibit IL-4 Signalling
Background/Aims: In recent times, allergy has become a financial, physical and psychological burden to the society as a whole. In allergic cascades, cytokine IL-4 binds to IL-4 receptor (IL-4R), consequently producing allergen-specific IgE antibodies by B cells. In addition, among other functions, I...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cell Physiol Biochem Press GmbH & Co KG
2015-05-01
|
Series: | Cellular Physiology and Biochemistry |
Subjects: | |
Online Access: | http://www.karger.com/Article/FullText/430259 |
Summary: | Background/Aims: In recent times, allergy has become a financial, physical and psychological burden to the society as a whole. In allergic cascades, cytokine IL-4 binds to IL-4 receptor (IL-4R), consequently producing allergen-specific IgE antibodies by B cells. In addition, among other functions, IL-4 is also responsible for B and T cell proliferation and differentiation. Hence, characterization of novel antagonists that inhibit IL-4 signalling forms the overall aim of this study. Methods: Phage display was used to screen a random 12-mer synthetic peptide library with a human IL-4Rα to identify peptide candidates. Once identified, the peptides were commercially synthesized and used for in vitro immunoassays. Results: We have successfully used phage display to identify M13 phage clones that demonstrated specific binding to IL-4Rα. The peptide N1 was synthesized for use in ELISA, demonstrating significant binding to IL-4Rα and inhibiting interaction with cytokine IL-4. Furthermore, the peptide was tested in a transfected HEK-Blue IL-4 reporter cell line model, which produces alkaline phosphatase (AP). QUANTI-Blue, a substrate, breaks down in the presence of AP producing a blue coloration. Using this colorimetric analysis, >50% inhibition of IL-4 signalling was achieved. Conclusion: We have successfully identified and characterised a synthetic peptide antagonist against IL-4Rα, which effectively inhibits IL-4 interaction with the IL-4Rα in vitro. Since IL-4 interaction with IL-4Rα is a common pathway for many allergies, a prophylactic treatment can be devised by inhibiting this interaction for future treatment of allergies. |
---|---|
ISSN: | 1015-8987 1421-9778 |