Magnetic field concentration using ferromagnetic material to propel a wireless power transfer based micro-robot

In this paper, we propose a novel coil structure, using a ferromagnetic material which concentrates the magnetic field, as the propulsion system of a wireless power transfer (WPT) based micro-robot. This structure uses an incident magnetic field to induce current during wireless power transfer, to g...

Full description

Bibliographic Details
Main Authors: Dongwook Kim, Bumjin Park, Jaehyoung Park, Hyun Ho Park, Seungyoung Ahn
Format: Article
Language:English
Published: AIP Publishing LLC 2018-05-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.5007774
Description
Summary:In this paper, we propose a novel coil structure, using a ferromagnetic material which concentrates the magnetic field, as the propulsion system of a wireless power transfer (WPT) based micro-robot. This structure uses an incident magnetic field to induce current during wireless power transfer, to generate a Lorentz force. To prevent net cancelation of the Lorentz force in the load coil, ferrite films were applied to one side of the coil segment. The demonstrated simplicity and effectiveness of the proposed micro-robot showed its suitability for applications. Simulation and experimental results confirmed a velocity of 1.02 mm/s with 6 mW power transfer capacity for the 3 mm sized micro-robot.
ISSN:2158-3226