On Some Formulas for Kaprekar Constants

Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>b</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="in...

Full description

Bibliographic Details
Main Authors: Atsushi Yamagami, Yūki Matsui
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/7/885
id doaj-0cbc86f776e04f659b2243511eed9f33
record_format Article
spelling doaj-0cbc86f776e04f659b2243511eed9f332020-11-25T00:23:27ZengMDPI AGSymmetry2073-89942019-07-0111788510.3390/sym11070885sym11070885On Some Formulas for Kaprekar ConstantsAtsushi Yamagami0Yūki Matsui1Department of Information Systems Science, Soka University, Tokyo 192-8577, JapanDepartment of Information Systems Science, Soka University, Tokyo 192-8577, JapanLet <inline-formula> <math display="inline"> <semantics> <mrow> <mi>b</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> be integers. For a <i>b</i>-adic <i>n</i>-digit integer <i>x</i>, let <i>A</i> (resp. <i>B</i>) be the <i>b</i>-adic <i>n</i>-digit integer obtained by rearranging the numbers of all digits of <i>x</i> in descending (resp. ascending) order. Then, we define the <i>Kaprekar transformation</i> <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mo>(</mo> <mi>b</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>:</mo> <mo>=</mo> <mi>A</mi> <mo>&#8722;</mo> <mi>B</mi> </mrow> </semantics> </math> </inline-formula>. If <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mo>(</mo> <mi>b</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>x</mi> </mrow> </semantics> </math> </inline-formula>, then <i>x</i> is called a <i>b</i>-<i>adic</i> <i>n</i>-<i>digit Kaprekar constant</i>. Moreover, we say that a <i>b</i>-adic <i>n</i>-digit Kaprekar constant <i>x</i> is <i>regular</i> when the numbers of all digits of <i>x</i> are distinct. In this article, we obtain some formulas for regular and non-regular Kaprekar constants, respectively. As an application of these formulas, we then see that for any integer <inline-formula> <math display="inline"> <semantics> <mrow> <mi>b</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, the number of <i>b</i>-adic odd-digit regular Kaprekar constants is greater than or equal to the number of all non-trivial divisors of <i>b</i>. Kaprekar constants have the symmetric property that they are fixed points for recursive number theoretical functions <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mrow> <mo>(</mo> <mi>b</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </msub> </semantics> </math> </inline-formula>.https://www.mdpi.com/2073-8994/11/7/885Kaprekar constantsKaprekar transformationfixed points for recursive functions
collection DOAJ
language English
format Article
sources DOAJ
author Atsushi Yamagami
Yūki Matsui
spellingShingle Atsushi Yamagami
Yūki Matsui
On Some Formulas for Kaprekar Constants
Symmetry
Kaprekar constants
Kaprekar transformation
fixed points for recursive functions
author_facet Atsushi Yamagami
Yūki Matsui
author_sort Atsushi Yamagami
title On Some Formulas for Kaprekar Constants
title_short On Some Formulas for Kaprekar Constants
title_full On Some Formulas for Kaprekar Constants
title_fullStr On Some Formulas for Kaprekar Constants
title_full_unstemmed On Some Formulas for Kaprekar Constants
title_sort on some formulas for kaprekar constants
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2019-07-01
description Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>b</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> be integers. For a <i>b</i>-adic <i>n</i>-digit integer <i>x</i>, let <i>A</i> (resp. <i>B</i>) be the <i>b</i>-adic <i>n</i>-digit integer obtained by rearranging the numbers of all digits of <i>x</i> in descending (resp. ascending) order. Then, we define the <i>Kaprekar transformation</i> <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mo>(</mo> <mi>b</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>:</mo> <mo>=</mo> <mi>A</mi> <mo>&#8722;</mo> <mi>B</mi> </mrow> </semantics> </math> </inline-formula>. If <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mo>(</mo> <mi>b</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>x</mi> </mrow> </semantics> </math> </inline-formula>, then <i>x</i> is called a <i>b</i>-<i>adic</i> <i>n</i>-<i>digit Kaprekar constant</i>. Moreover, we say that a <i>b</i>-adic <i>n</i>-digit Kaprekar constant <i>x</i> is <i>regular</i> when the numbers of all digits of <i>x</i> are distinct. In this article, we obtain some formulas for regular and non-regular Kaprekar constants, respectively. As an application of these formulas, we then see that for any integer <inline-formula> <math display="inline"> <semantics> <mrow> <mi>b</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, the number of <i>b</i>-adic odd-digit regular Kaprekar constants is greater than or equal to the number of all non-trivial divisors of <i>b</i>. Kaprekar constants have the symmetric property that they are fixed points for recursive number theoretical functions <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mrow> <mo>(</mo> <mi>b</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </msub> </semantics> </math> </inline-formula>.
topic Kaprekar constants
Kaprekar transformation
fixed points for recursive functions
url https://www.mdpi.com/2073-8994/11/7/885
work_keys_str_mv AT atsushiyamagami onsomeformulasforkaprekarconstants
AT yukimatsui onsomeformulasforkaprekarconstants
_version_ 1725356883460489216