On Some Formulas for Kaprekar Constants
Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>b</mi> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="in...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-07-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/11/7/885 |
id |
doaj-0cbc86f776e04f659b2243511eed9f33 |
---|---|
record_format |
Article |
spelling |
doaj-0cbc86f776e04f659b2243511eed9f332020-11-25T00:23:27ZengMDPI AGSymmetry2073-89942019-07-0111788510.3390/sym11070885sym11070885On Some Formulas for Kaprekar ConstantsAtsushi Yamagami0Yūki Matsui1Department of Information Systems Science, Soka University, Tokyo 192-8577, JapanDepartment of Information Systems Science, Soka University, Tokyo 192-8577, JapanLet <inline-formula> <math display="inline"> <semantics> <mrow> <mi>b</mi> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> be integers. For a <i>b</i>-adic <i>n</i>-digit integer <i>x</i>, let <i>A</i> (resp. <i>B</i>) be the <i>b</i>-adic <i>n</i>-digit integer obtained by rearranging the numbers of all digits of <i>x</i> in descending (resp. ascending) order. Then, we define the <i>Kaprekar transformation</i> <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mo>(</mo> <mi>b</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>:</mo> <mo>=</mo> <mi>A</mi> <mo>−</mo> <mi>B</mi> </mrow> </semantics> </math> </inline-formula>. If <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mo>(</mo> <mi>b</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>x</mi> </mrow> </semantics> </math> </inline-formula>, then <i>x</i> is called a <i>b</i>-<i>adic</i> <i>n</i>-<i>digit Kaprekar constant</i>. Moreover, we say that a <i>b</i>-adic <i>n</i>-digit Kaprekar constant <i>x</i> is <i>regular</i> when the numbers of all digits of <i>x</i> are distinct. In this article, we obtain some formulas for regular and non-regular Kaprekar constants, respectively. As an application of these formulas, we then see that for any integer <inline-formula> <math display="inline"> <semantics> <mrow> <mi>b</mi> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, the number of <i>b</i>-adic odd-digit regular Kaprekar constants is greater than or equal to the number of all non-trivial divisors of <i>b</i>. Kaprekar constants have the symmetric property that they are fixed points for recursive number theoretical functions <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mrow> <mo>(</mo> <mi>b</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </msub> </semantics> </math> </inline-formula>.https://www.mdpi.com/2073-8994/11/7/885Kaprekar constantsKaprekar transformationfixed points for recursive functions |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Atsushi Yamagami Yūki Matsui |
spellingShingle |
Atsushi Yamagami Yūki Matsui On Some Formulas for Kaprekar Constants Symmetry Kaprekar constants Kaprekar transformation fixed points for recursive functions |
author_facet |
Atsushi Yamagami Yūki Matsui |
author_sort |
Atsushi Yamagami |
title |
On Some Formulas for Kaprekar Constants |
title_short |
On Some Formulas for Kaprekar Constants |
title_full |
On Some Formulas for Kaprekar Constants |
title_fullStr |
On Some Formulas for Kaprekar Constants |
title_full_unstemmed |
On Some Formulas for Kaprekar Constants |
title_sort |
on some formulas for kaprekar constants |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2019-07-01 |
description |
Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>b</mi> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> be integers. For a <i>b</i>-adic <i>n</i>-digit integer <i>x</i>, let <i>A</i> (resp. <i>B</i>) be the <i>b</i>-adic <i>n</i>-digit integer obtained by rearranging the numbers of all digits of <i>x</i> in descending (resp. ascending) order. Then, we define the <i>Kaprekar transformation</i> <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mo>(</mo> <mi>b</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>:</mo> <mo>=</mo> <mi>A</mi> <mo>−</mo> <mi>B</mi> </mrow> </semantics> </math> </inline-formula>. If <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mo>(</mo> <mi>b</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>x</mi> </mrow> </semantics> </math> </inline-formula>, then <i>x</i> is called a <i>b</i>-<i>adic</i> <i>n</i>-<i>digit Kaprekar constant</i>. Moreover, we say that a <i>b</i>-adic <i>n</i>-digit Kaprekar constant <i>x</i> is <i>regular</i> when the numbers of all digits of <i>x</i> are distinct. In this article, we obtain some formulas for regular and non-regular Kaprekar constants, respectively. As an application of these formulas, we then see that for any integer <inline-formula> <math display="inline"> <semantics> <mrow> <mi>b</mi> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, the number of <i>b</i>-adic odd-digit regular Kaprekar constants is greater than or equal to the number of all non-trivial divisors of <i>b</i>. Kaprekar constants have the symmetric property that they are fixed points for recursive number theoretical functions <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mrow> <mo>(</mo> <mi>b</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </msub> </semantics> </math> </inline-formula>. |
topic |
Kaprekar constants Kaprekar transformation fixed points for recursive functions |
url |
https://www.mdpi.com/2073-8994/11/7/885 |
work_keys_str_mv |
AT atsushiyamagami onsomeformulasforkaprekarconstants AT yukimatsui onsomeformulasforkaprekarconstants |
_version_ |
1725356883460489216 |