Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series

The Environmental Data Portal EnviDat aims to fuse data publication repository functionalities with next-generation web-based environmental geospatial information systems (web-EGIS) and Earth Observation (EO) data cube functionalities. User requirements related to mapping and visualization represent...

Full description

Bibliographic Details
Main Authors: Ionuț Iosifescu Enescu, Lucia de Espona, Dominik Haas-Artho, Rebecca Kurup Buchholz, David Hanimann, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Christian Ginzler, Niklaus E. Zimmermann, Loïc Pellissier
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Geomatics
Subjects:
Online Access:https://www.mdpi.com/2673-7418/1/3/21
id doaj-0cc5021f44a5404cb8e2d8a4d56b977e
record_format Article
spelling doaj-0cc5021f44a5404cb8e2d8a4d56b977e2021-09-26T00:13:48ZengMDPI AGGeomatics2673-74182021-08-0112136938210.3390/geomatics1030021Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time SeriesIonuț Iosifescu Enescu0Lucia de Espona1Dominik Haas-Artho2Rebecca Kurup Buchholz3David Hanimann4Marius Rüetschi5Dirk Nikolaus Karger6Gian-Kasper Plattner7Martin Hägeli8Christian Ginzler9Niklaus E. Zimmermann10Loïc Pellissier11Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandThe Environmental Data Portal EnviDat aims to fuse data publication repository functionalities with next-generation web-based environmental geospatial information systems (web-EGIS) and Earth Observation (EO) data cube functionalities. User requirements related to mapping and visualization represent a major challenge for current environmental data portals. The new Cloud Optimized Raster Encoding (CORE) format enables an efficient storage and management of gridded data by applying video encoding algorithms. Inspired by the cloud optimized GeoTIFF (COG) format, the design of CORE is based on the same principles that enable efficient workflows on the cloud, addressing web-EGIS visualization challenges for large environmental time series in geosciences. CORE is a web-native streamable format that can compactly contain raster imagery as a data hypercube. It enables simultaneous exchange, preservation, and fast visualization of time series raster data in environmental repositories. The CORE format specifications are open source and can be used by other platforms to manage and visualize large environmental time series.https://www.mdpi.com/2673-7418/1/3/21very large geodataraster time seriesenvironmental open dataopen softwareweb-EGISdata cube
collection DOAJ
language English
format Article
sources DOAJ
author Ionuț Iosifescu Enescu
Lucia de Espona
Dominik Haas-Artho
Rebecca Kurup Buchholz
David Hanimann
Marius Rüetschi
Dirk Nikolaus Karger
Gian-Kasper Plattner
Martin Hägeli
Christian Ginzler
Niklaus E. Zimmermann
Loïc Pellissier
spellingShingle Ionuț Iosifescu Enescu
Lucia de Espona
Dominik Haas-Artho
Rebecca Kurup Buchholz
David Hanimann
Marius Rüetschi
Dirk Nikolaus Karger
Gian-Kasper Plattner
Martin Hägeli
Christian Ginzler
Niklaus E. Zimmermann
Loïc Pellissier
Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series
Geomatics
very large geodata
raster time series
environmental open data
open software
web-EGIS
data cube
author_facet Ionuț Iosifescu Enescu
Lucia de Espona
Dominik Haas-Artho
Rebecca Kurup Buchholz
David Hanimann
Marius Rüetschi
Dirk Nikolaus Karger
Gian-Kasper Plattner
Martin Hägeli
Christian Ginzler
Niklaus E. Zimmermann
Loïc Pellissier
author_sort Ionuț Iosifescu Enescu
title Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series
title_short Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series
title_full Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series
title_fullStr Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series
title_full_unstemmed Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series
title_sort cloud optimized raster encoding (core): a web-native streamable format for large environmental time series
publisher MDPI AG
series Geomatics
issn 2673-7418
publishDate 2021-08-01
description The Environmental Data Portal EnviDat aims to fuse data publication repository functionalities with next-generation web-based environmental geospatial information systems (web-EGIS) and Earth Observation (EO) data cube functionalities. User requirements related to mapping and visualization represent a major challenge for current environmental data portals. The new Cloud Optimized Raster Encoding (CORE) format enables an efficient storage and management of gridded data by applying video encoding algorithms. Inspired by the cloud optimized GeoTIFF (COG) format, the design of CORE is based on the same principles that enable efficient workflows on the cloud, addressing web-EGIS visualization challenges for large environmental time series in geosciences. CORE is a web-native streamable format that can compactly contain raster imagery as a data hypercube. It enables simultaneous exchange, preservation, and fast visualization of time series raster data in environmental repositories. The CORE format specifications are open source and can be used by other platforms to manage and visualize large environmental time series.
topic very large geodata
raster time series
environmental open data
open software
web-EGIS
data cube
url https://www.mdpi.com/2673-7418/1/3/21
work_keys_str_mv AT ionutiosifescuenescu cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries
AT luciadeespona cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries
AT dominikhaasartho cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries
AT rebeccakurupbuchholz cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries
AT davidhanimann cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries
AT mariusruetschi cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries
AT dirknikolauskarger cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries
AT giankasperplattner cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries
AT martinhageli cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries
AT christianginzler cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries
AT niklausezimmermann cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries
AT loicpellissier cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries
_version_ 1717366647299244032