Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series
The Environmental Data Portal EnviDat aims to fuse data publication repository functionalities with next-generation web-based environmental geospatial information systems (web-EGIS) and Earth Observation (EO) data cube functionalities. User requirements related to mapping and visualization represent...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Geomatics |
Subjects: | |
Online Access: | https://www.mdpi.com/2673-7418/1/3/21 |
id |
doaj-0cc5021f44a5404cb8e2d8a4d56b977e |
---|---|
record_format |
Article |
spelling |
doaj-0cc5021f44a5404cb8e2d8a4d56b977e2021-09-26T00:13:48ZengMDPI AGGeomatics2673-74182021-08-0112136938210.3390/geomatics1030021Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time SeriesIonuț Iosifescu Enescu0Lucia de Espona1Dominik Haas-Artho2Rebecca Kurup Buchholz3David Hanimann4Marius Rüetschi5Dirk Nikolaus Karger6Gian-Kasper Plattner7Martin Hägeli8Christian Ginzler9Niklaus E. Zimmermann10Loïc Pellissier11Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, SwitzerlandThe Environmental Data Portal EnviDat aims to fuse data publication repository functionalities with next-generation web-based environmental geospatial information systems (web-EGIS) and Earth Observation (EO) data cube functionalities. User requirements related to mapping and visualization represent a major challenge for current environmental data portals. The new Cloud Optimized Raster Encoding (CORE) format enables an efficient storage and management of gridded data by applying video encoding algorithms. Inspired by the cloud optimized GeoTIFF (COG) format, the design of CORE is based on the same principles that enable efficient workflows on the cloud, addressing web-EGIS visualization challenges for large environmental time series in geosciences. CORE is a web-native streamable format that can compactly contain raster imagery as a data hypercube. It enables simultaneous exchange, preservation, and fast visualization of time series raster data in environmental repositories. The CORE format specifications are open source and can be used by other platforms to manage and visualize large environmental time series.https://www.mdpi.com/2673-7418/1/3/21very large geodataraster time seriesenvironmental open dataopen softwareweb-EGISdata cube |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ionuț Iosifescu Enescu Lucia de Espona Dominik Haas-Artho Rebecca Kurup Buchholz David Hanimann Marius Rüetschi Dirk Nikolaus Karger Gian-Kasper Plattner Martin Hägeli Christian Ginzler Niklaus E. Zimmermann Loïc Pellissier |
spellingShingle |
Ionuț Iosifescu Enescu Lucia de Espona Dominik Haas-Artho Rebecca Kurup Buchholz David Hanimann Marius Rüetschi Dirk Nikolaus Karger Gian-Kasper Plattner Martin Hägeli Christian Ginzler Niklaus E. Zimmermann Loïc Pellissier Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series Geomatics very large geodata raster time series environmental open data open software web-EGIS data cube |
author_facet |
Ionuț Iosifescu Enescu Lucia de Espona Dominik Haas-Artho Rebecca Kurup Buchholz David Hanimann Marius Rüetschi Dirk Nikolaus Karger Gian-Kasper Plattner Martin Hägeli Christian Ginzler Niklaus E. Zimmermann Loïc Pellissier |
author_sort |
Ionuț Iosifescu Enescu |
title |
Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series |
title_short |
Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series |
title_full |
Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series |
title_fullStr |
Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series |
title_full_unstemmed |
Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series |
title_sort |
cloud optimized raster encoding (core): a web-native streamable format for large environmental time series |
publisher |
MDPI AG |
series |
Geomatics |
issn |
2673-7418 |
publishDate |
2021-08-01 |
description |
The Environmental Data Portal EnviDat aims to fuse data publication repository functionalities with next-generation web-based environmental geospatial information systems (web-EGIS) and Earth Observation (EO) data cube functionalities. User requirements related to mapping and visualization represent a major challenge for current environmental data portals. The new Cloud Optimized Raster Encoding (CORE) format enables an efficient storage and management of gridded data by applying video encoding algorithms. Inspired by the cloud optimized GeoTIFF (COG) format, the design of CORE is based on the same principles that enable efficient workflows on the cloud, addressing web-EGIS visualization challenges for large environmental time series in geosciences. CORE is a web-native streamable format that can compactly contain raster imagery as a data hypercube. It enables simultaneous exchange, preservation, and fast visualization of time series raster data in environmental repositories. The CORE format specifications are open source and can be used by other platforms to manage and visualize large environmental time series. |
topic |
very large geodata raster time series environmental open data open software web-EGIS data cube |
url |
https://www.mdpi.com/2673-7418/1/3/21 |
work_keys_str_mv |
AT ionutiosifescuenescu cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries AT luciadeespona cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries AT dominikhaasartho cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries AT rebeccakurupbuchholz cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries AT davidhanimann cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries AT mariusruetschi cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries AT dirknikolauskarger cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries AT giankasperplattner cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries AT martinhageli cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries AT christianginzler cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries AT niklausezimmermann cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries AT loicpellissier cloudoptimizedrasterencodingcoreawebnativestreamableformatforlargeenvironmentaltimeseries |
_version_ |
1717366647299244032 |