Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide

Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr&l...

Full description

Bibliographic Details
Main Authors: F. Ziska, B. Quack, K. Abrahamsson, S. D. Archer, E. Atlas, T. Bell, J. H. Butler, L. J. Carpenter, C. E. Jones, N. R. P. Harris, H. Hepach, K. G. Heumann, C. Hughes, J. Kuss, K. Krüger, P. Liss, R. M. Moore, A. Orlikowska, S. Raimund, C. E. Reeves, W. Reifenhäuser, A. D. Robinson, C. Schall, T. Tanhua, S. Tegtmeier, S. Turner, L. Wang, D. Wallace, J. Williams, H. Yamamoto, S. Yvon-Lewis, Y. Yokouchi
Format: Article
Language:English
Published: Copernicus Publications 2013-09-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/13/8915/2013/acp-13-8915-2013.pdf
id doaj-0cd4cdcee57741309573bd0e4cfa8833
record_format Article
spelling doaj-0cd4cdcee57741309573bd0e4cfa88332020-11-24T22:59:45ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242013-09-0113178915893410.5194/acp-13-8915-2013Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodideF. ZiskaB. QuackK. AbrahamssonS. D. ArcherE. AtlasT. BellJ. H. ButlerL. J. CarpenterC. E. JonesN. R. P. HarrisH. HepachK. G. HeumannC. HughesJ. KussK. KrügerP. LissR. M. MooreA. OrlikowskaS. RaimundC. E. ReevesW. ReifenhäuserA. D. RobinsonC. SchallT. TanhuaS. TegtmeierS. TurnerL. WangD. WallaceJ. WilliamsH. YamamotoS. Yvon-LewisY. YokouchiVolatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr<sub>3</sub>), dibromomethane (CH<sub>2</sub>Br<sub>2</sub>) and methyl iodide (CH<sub>3</sub>I). The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt (Halocarbons in the Ocean and Atmosphere) database (<a href="https://halocat.geomar.de/"target="_blank">https://halocat.geomar.de/</a>). Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1°&times;1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global sea-to-air concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr<sup>−1</sup> for CHBr<sub>3</sub>, 0.78/0.98 Gmol Br yr<sup>−1</sup> for CH<sub>2</sub>Br<sub>2</sub> and 1.24/1.45 Gmol Br yr<sup>−1</sup> for CH<sub>3</sub>I (robust fit/ordinary least squares regression techniques). Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic regions. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the subtropical gyre regions. Inter-annual and seasonal variation is contained within our flux calculations for all three compounds. Compared to earlier studies, our global fluxes are at the lower end of estimates, especially for bromoform. An under-representation of coastal emissions and of extreme events in our estimate might explain the mismatch between our bottom-up emission estimate and top-down approaches.http://www.atmos-chem-phys.net/13/8915/2013/acp-13-8915-2013.pdf
collection DOAJ
language English
format Article
sources DOAJ
author F. Ziska
B. Quack
K. Abrahamsson
S. D. Archer
E. Atlas
T. Bell
J. H. Butler
L. J. Carpenter
C. E. Jones
N. R. P. Harris
H. Hepach
K. G. Heumann
C. Hughes
J. Kuss
K. Krüger
P. Liss
R. M. Moore
A. Orlikowska
S. Raimund
C. E. Reeves
W. Reifenhäuser
A. D. Robinson
C. Schall
T. Tanhua
S. Tegtmeier
S. Turner
L. Wang
D. Wallace
J. Williams
H. Yamamoto
S. Yvon-Lewis
Y. Yokouchi
spellingShingle F. Ziska
B. Quack
K. Abrahamsson
S. D. Archer
E. Atlas
T. Bell
J. H. Butler
L. J. Carpenter
C. E. Jones
N. R. P. Harris
H. Hepach
K. G. Heumann
C. Hughes
J. Kuss
K. Krüger
P. Liss
R. M. Moore
A. Orlikowska
S. Raimund
C. E. Reeves
W. Reifenhäuser
A. D. Robinson
C. Schall
T. Tanhua
S. Tegtmeier
S. Turner
L. Wang
D. Wallace
J. Williams
H. Yamamoto
S. Yvon-Lewis
Y. Yokouchi
Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide
Atmospheric Chemistry and Physics
author_facet F. Ziska
B. Quack
K. Abrahamsson
S. D. Archer
E. Atlas
T. Bell
J. H. Butler
L. J. Carpenter
C. E. Jones
N. R. P. Harris
H. Hepach
K. G. Heumann
C. Hughes
J. Kuss
K. Krüger
P. Liss
R. M. Moore
A. Orlikowska
S. Raimund
C. E. Reeves
W. Reifenhäuser
A. D. Robinson
C. Schall
T. Tanhua
S. Tegtmeier
S. Turner
L. Wang
D. Wallace
J. Williams
H. Yamamoto
S. Yvon-Lewis
Y. Yokouchi
author_sort F. Ziska
title Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide
title_short Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide
title_full Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide
title_fullStr Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide
title_full_unstemmed Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide
title_sort global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2013-09-01
description Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr<sub>3</sub>), dibromomethane (CH<sub>2</sub>Br<sub>2</sub>) and methyl iodide (CH<sub>3</sub>I). The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt (Halocarbons in the Ocean and Atmosphere) database (<a href="https://halocat.geomar.de/"target="_blank">https://halocat.geomar.de/</a>). Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1°&times;1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global sea-to-air concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr<sup>−1</sup> for CHBr<sub>3</sub>, 0.78/0.98 Gmol Br yr<sup>−1</sup> for CH<sub>2</sub>Br<sub>2</sub> and 1.24/1.45 Gmol Br yr<sup>−1</sup> for CH<sub>3</sub>I (robust fit/ordinary least squares regression techniques). Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic regions. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the subtropical gyre regions. Inter-annual and seasonal variation is contained within our flux calculations for all three compounds. Compared to earlier studies, our global fluxes are at the lower end of estimates, especially for bromoform. An under-representation of coastal emissions and of extreme events in our estimate might explain the mismatch between our bottom-up emission estimate and top-down approaches.
url http://www.atmos-chem-phys.net/13/8915/2013/acp-13-8915-2013.pdf
work_keys_str_mv AT fziska globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT bquack globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT kabrahamsson globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT sdarcher globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT eatlas globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT tbell globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT jhbutler globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT ljcarpenter globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT cejones globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT nrpharris globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT hhepach globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT kgheumann globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT chughes globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT jkuss globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT kkruger globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT pliss globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT rmmoore globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT aorlikowska globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT sraimund globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT cereeves globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT wreifenhauser globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT adrobinson globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT cschall globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT ttanhua globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT stegtmeier globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT sturner globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT lwang globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT dwallace globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT jwilliams globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT hyamamoto globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT syvonlewis globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
AT yyokouchi globalseatoairfluxclimatologyforbromoformdibromomethaneandmethyliodide
_version_ 1725643885131071488