Dynamic Cerebral Autoregulation Reproducibility Is Affected by Physiological Variability

Parameters describing dynamic cerebral autoregulation (DCA) have limited reproducibility. In an international, multi-center study, we evaluated the influence of multiple analytical methods on the reproducibility of DCA. Fourteen participating centers analyzed repeated measurements from 75 healthy su...

Full description

Bibliographic Details
Main Authors: Marit L. Sanders, Jan Willem J. Elting, Ronney B. Panerai, Marcel Aries, Edson Bor-Seng-Shu, Alexander Caicedo, Max Chacon, Erik D. Gommer, Sabine Van Huffel, José L. Jara, Kyriaki Kostoglou, Adam Mahdi, Vasilis Z. Marmarelis, Georgios D. Mitsis, Martin Müller, Dragana Nikolic, Ricardo C. Nogueira, Stephen J. Payne, Corina Puppo, Dae C. Shin, David M. Simpson, Takashi Tarumi, Bernardo Yelicich, Rong Zhang, Jurgen A. H. R. Claassen
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-07-01
Series:Frontiers in Physiology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fphys.2019.00865/full
id doaj-0cd65adba56744b88007071d2a226909
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Marit L. Sanders
Jan Willem J. Elting
Ronney B. Panerai
Marcel Aries
Edson Bor-Seng-Shu
Alexander Caicedo
Max Chacon
Erik D. Gommer
Sabine Van Huffel
Sabine Van Huffel
José L. Jara
Kyriaki Kostoglou
Adam Mahdi
Vasilis Z. Marmarelis
Georgios D. Mitsis
Martin Müller
Dragana Nikolic
Ricardo C. Nogueira
Stephen J. Payne
Corina Puppo
Dae C. Shin
David M. Simpson
Takashi Tarumi
Bernardo Yelicich
Rong Zhang
Jurgen A. H. R. Claassen
spellingShingle Marit L. Sanders
Jan Willem J. Elting
Ronney B. Panerai
Marcel Aries
Edson Bor-Seng-Shu
Alexander Caicedo
Max Chacon
Erik D. Gommer
Sabine Van Huffel
Sabine Van Huffel
José L. Jara
Kyriaki Kostoglou
Adam Mahdi
Vasilis Z. Marmarelis
Georgios D. Mitsis
Martin Müller
Dragana Nikolic
Ricardo C. Nogueira
Stephen J. Payne
Corina Puppo
Dae C. Shin
David M. Simpson
Takashi Tarumi
Bernardo Yelicich
Rong Zhang
Jurgen A. H. R. Claassen
Dynamic Cerebral Autoregulation Reproducibility Is Affected by Physiological Variability
Frontiers in Physiology
ARI index
cerebral blood flow
cerebral hemodynamics
transcranial Doppler
transfer function analysis
author_facet Marit L. Sanders
Jan Willem J. Elting
Ronney B. Panerai
Marcel Aries
Edson Bor-Seng-Shu
Alexander Caicedo
Max Chacon
Erik D. Gommer
Sabine Van Huffel
Sabine Van Huffel
José L. Jara
Kyriaki Kostoglou
Adam Mahdi
Vasilis Z. Marmarelis
Georgios D. Mitsis
Martin Müller
Dragana Nikolic
Ricardo C. Nogueira
Stephen J. Payne
Corina Puppo
Dae C. Shin
David M. Simpson
Takashi Tarumi
Bernardo Yelicich
Rong Zhang
Jurgen A. H. R. Claassen
author_sort Marit L. Sanders
title Dynamic Cerebral Autoregulation Reproducibility Is Affected by Physiological Variability
title_short Dynamic Cerebral Autoregulation Reproducibility Is Affected by Physiological Variability
title_full Dynamic Cerebral Autoregulation Reproducibility Is Affected by Physiological Variability
title_fullStr Dynamic Cerebral Autoregulation Reproducibility Is Affected by Physiological Variability
title_full_unstemmed Dynamic Cerebral Autoregulation Reproducibility Is Affected by Physiological Variability
title_sort dynamic cerebral autoregulation reproducibility is affected by physiological variability
publisher Frontiers Media S.A.
series Frontiers in Physiology
issn 1664-042X
publishDate 2019-07-01
description Parameters describing dynamic cerebral autoregulation (DCA) have limited reproducibility. In an international, multi-center study, we evaluated the influence of multiple analytical methods on the reproducibility of DCA. Fourteen participating centers analyzed repeated measurements from 75 healthy subjects, consisting of 5 min of spontaneous fluctuations in blood pressure and cerebral blood flow velocity signals, based on their usual methods of analysis. DCA methods were grouped into three broad categories, depending on output types: (1) transfer function analysis (TFA); (2) autoregulation index (ARI); and (3) correlation coefficient. Only TFA gain in the low frequency (LF) band showed good reproducibility in approximately half of the estimates of gain, defined as an intraclass correlation coefficient (ICC) of >0.6. None of the other DCA metrics had good reproducibility. For TFA-like and ARI-like methods, ICCs were lower than values obtained with surrogate data (p < 0.05). For TFA-like methods, ICCs were lower for the very LF band (gain 0.38 ± 0.057, phase 0.17 ± 0.13) than for LF band (gain 0.59 ± 0.078, phase 0.39 ± 0.11, p ≤ 0.001 for both gain and phase). For ARI-like methods, the mean ICC was 0.30 ± 0.12 and for the correlation methods 0.24 ± 0.23. Based on comparisons with ICC estimates obtained from surrogate data, we conclude that physiological variability or non-stationarity is likely to be the main reason for the poor reproducibility of DCA parameters.
topic ARI index
cerebral blood flow
cerebral hemodynamics
transcranial Doppler
transfer function analysis
url https://www.frontiersin.org/article/10.3389/fphys.2019.00865/full
work_keys_str_mv AT maritlsanders dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT janwillemjelting dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT ronneybpanerai dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT marcelaries dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT edsonborsengshu dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT alexandercaicedo dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT maxchacon dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT erikdgommer dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT sabinevanhuffel dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT sabinevanhuffel dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT joseljara dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT kyriakikostoglou dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT adammahdi dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT vasiliszmarmarelis dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT georgiosdmitsis dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT martinmuller dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT dragananikolic dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT ricardocnogueira dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT stephenjpayne dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT corinapuppo dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT daecshin dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT davidmsimpson dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT takashitarumi dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT bernardoyelicich dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT rongzhang dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
AT jurgenahrclaassen dynamiccerebralautoregulationreproducibilityisaffectedbyphysiologicalvariability
_version_ 1725886607352922112
spelling doaj-0cd65adba56744b88007071d2a2269092020-11-24T21:49:54ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2019-07-011010.3389/fphys.2019.00865461520Dynamic Cerebral Autoregulation Reproducibility Is Affected by Physiological VariabilityMarit L. Sanders0Jan Willem J. Elting1Ronney B. Panerai2Marcel Aries3Edson Bor-Seng-Shu4Alexander Caicedo5Max Chacon6Erik D. Gommer7Sabine Van Huffel8Sabine Van Huffel9José L. Jara10Kyriaki Kostoglou11Adam Mahdi12Vasilis Z. Marmarelis13Georgios D. Mitsis14Martin Müller15Dragana Nikolic16Ricardo C. Nogueira17Stephen J. Payne18Corina Puppo19Dae C. Shin20David M. Simpson21Takashi Tarumi22Bernardo Yelicich23Rong Zhang24Jurgen A. H. R. Claassen25Department of Geriatric Medicine, Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, NetherlandsDepartment of Neurology, University Medical Center Groningen, Groningen, NetherlandsDepartment of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United KingdomDepartment of Intensive Care, University of Maastricht, Maastricht University Medical Center, Maastricht, NetherlandsDepartment of Neurology, Faculty of Medicine, Hospital das Clinicas University of São Paulo, São Paulo, BrazilDepartment of Applied Mathematics and Computer Science, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá, ColombiaDepartment of Engineering Informatics, Institute of Biomedical Engineering, University of Santiago, Santiago, ChileDepartment of Clinical Neurophysiology, Maastricht University Medical Centre, Maastricht, NetherlandsDepartment of Electronic Engineering (ESAT), Stadius Center for Dynamical Systems, Signal Processing and Data Analytics, Katholieke Universiteit Leuven, Leuven, Belgium0Interuniversity Microelectronics Centre, Leuven, BelgiumDepartment of Engineering Informatics, Institute of Biomedical Engineering, University of Santiago, Santiago, Chile1Department of Electrical, Computer and Software Engineering, McGill University, Montreal, QC, Canada2Department of Engineering Science, University of Oxford, Oxford, United Kingdom3Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States4Department of Bioengineering, McGill University, Montreal, QC, Canada5Department of Neurology, Luzerner Kantonsspital, Luzern, Switzerland6Faculty of Engineering and the Environment, Institute of Sound and Vibration Research, University of Southampton, Southampton, United KingdomDepartment of Neurology, Faculty of Medicine, Hospital das Clinicas University of São Paulo, São Paulo, Brazil2Department of Engineering Science, University of Oxford, Oxford, United Kingdom7Departamento de Emergencia, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay3Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States6Faculty of Engineering and the Environment, Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom8Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, University of Texas Southwestern Medical Center, Dallas, TX, United States7Departamento de Emergencia, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay8Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, University of Texas Southwestern Medical Center, Dallas, TX, United StatesDepartment of Geriatric Medicine, Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, NetherlandsParameters describing dynamic cerebral autoregulation (DCA) have limited reproducibility. In an international, multi-center study, we evaluated the influence of multiple analytical methods on the reproducibility of DCA. Fourteen participating centers analyzed repeated measurements from 75 healthy subjects, consisting of 5 min of spontaneous fluctuations in blood pressure and cerebral blood flow velocity signals, based on their usual methods of analysis. DCA methods were grouped into three broad categories, depending on output types: (1) transfer function analysis (TFA); (2) autoregulation index (ARI); and (3) correlation coefficient. Only TFA gain in the low frequency (LF) band showed good reproducibility in approximately half of the estimates of gain, defined as an intraclass correlation coefficient (ICC) of >0.6. None of the other DCA metrics had good reproducibility. For TFA-like and ARI-like methods, ICCs were lower than values obtained with surrogate data (p < 0.05). For TFA-like methods, ICCs were lower for the very LF band (gain 0.38 ± 0.057, phase 0.17 ± 0.13) than for LF band (gain 0.59 ± 0.078, phase 0.39 ± 0.11, p ≤ 0.001 for both gain and phase). For ARI-like methods, the mean ICC was 0.30 ± 0.12 and for the correlation methods 0.24 ± 0.23. Based on comparisons with ICC estimates obtained from surrogate data, we conclude that physiological variability or non-stationarity is likely to be the main reason for the poor reproducibility of DCA parameters.https://www.frontiersin.org/article/10.3389/fphys.2019.00865/fullARI indexcerebral blood flowcerebral hemodynamicstranscranial Dopplertransfer function analysis