In Vitro Antitumor Active Gold(I) Triphenylphosphane Complexes Containing 7-Azaindoles

A series of gold(I) complexes of the general composition [Au(naza)(PPh3)] (1–8) was prepared and thoroughly characterized (e.g., electrospray ionization (ESI) mass spectrometry and multinuclear nuclear magnetic resonance (NMR) spectroscopy). The N1-deprotonated anions of 7-azaindole or its derivativ...

Full description

Bibliographic Details
Main Authors: Pavel Štarha, Zdeněk Trávníček, Bohuslav Drahoš, Zdeněk Dvořák
Format: Article
Language:English
Published: MDPI AG 2016-12-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:http://www.mdpi.com/1422-0067/17/12/2084
Description
Summary:A series of gold(I) complexes of the general composition [Au(naza)(PPh3)] (1–8) was prepared and thoroughly characterized (e.g., electrospray ionization (ESI) mass spectrometry and multinuclear nuclear magnetic resonance (NMR) spectroscopy). The N1-deprotonated anions of 7-azaindole or its derivatives (naza) are coordinated to the metal centre through the N1 atom of their pyrrole ring, as proved by a single crystal X-ray analysis of the complexes [Au(3I5Braza)(PPh3)] (7) and [Au(2Me4Claza)(PPh3)]·½H2O (8′). The in vitrocytotoxicity of the complexes 1–8 was studied against both the cisplatin-sensitive and -resistant variants of the A2780 human ovarian carcinoma cell line, as well as against the MRC-5 human normal fibroblast cell line. The complexes 4, 5, and 8, containing deprotonated 3-iodo-7-azaindole, 5-bromo-7-azaindole, and 2-methyl-4-chloro-7-azaindole (2Me4Claza), respectively, showed significantly higher potency (IC50 = 2.8–3.5 µM) than cisplatin (IC50 = 20.3 µM) against the A2780 cells and markedly lower effect towards the MRC-5 non-cancerous cells (IC50 = 26.0–29.2 µM), as compared with the mentioned A2780 cancer cells. The results of the flow cytometric studies of the A2780 cell cycle perturbations revealed a G2-cell cycle phase arrest of the cells treated by the representative complexes 1 and 5, which is indicative of a different mechanism of action from cisplatin (induced S-cell cycle phase arrest). The stability of the representative complex 8 in the water-containing solution as well as its ability to interact with the reduced glutathione, cysteine and bovine serum albumin was also studied using 1H and 31P-NMR spectroscopy (studied in the 50% DMF-d7/50% D2O mixture) and ESI+ mass spectrometry (studied in the 50% DMF/50% H2O mixture); DMF = dimethylformamide. The obtained results are indicative for the release of the N-donor azaindole-based ligand in the presence of the used biomolecules.
ISSN:1422-0067