A Novel Metal Foreign Object Detection for Wireless High-Power Transfer Using a Two-Layer Balanced Coil Array with a Serial-Resonance Maxwell Bridge

In a wireless high-power transfer system with a distance of several tens of centimeters apart between the transmitter and receiver coils, one of the most challenging issues is to detect metallic foreign objects between the transmitter and receiver coils. The metallic foreign objects must be detected...

Full description

Bibliographic Details
Main Authors: Sunhee Kim, Haeyong Jung, Youngjun Ju, Yongseok Lim
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/9/12/2070
Description
Summary:In a wireless high-power transfer system with a distance of several tens of centimeters apart between the transmitter and receiver coils, one of the most challenging issues is to detect metallic foreign objects between the transmitter and receiver coils. The metallic foreign objects must be detected and removed since these reduce the transmission efficiency and cause heat generation of the transmitter and receiver. This paper presents two-layer symmetric balanced coil array so that if there are metallic foreign objects, it can be detected through the change of the inductance of the balanced coils. Since the balanced coil is composed of coils that are in a symmetrical relationship in position, there is no need for a reference coil, and interference between coils is reduced by dividing the coil into two layers. In addition, a novel serial-resonance Maxwell bridge circuit to improve the inductance change detection performance is presented in this paper. The proposed metallic foreign object detection system is implemented using two-layer balanced coil array with a serial-resonance Maxwell bridge and the experimental results show that voltage changes of hundreds of mV to several V occur when a metallic foreign object is inserted, so that even small metals such as clips can be detected.
ISSN:2079-9292