Ballistic impact on concrete slabs: An experimental and numerical study

The ballistic perforation resistance of 50 mm thick concrete slabs impacted by 20 mm diameter ogive-nose steel projectiles is investigated experimentally and numerically. Three commercially produced concretes with nominal unconfined compressive strengths of 35, 75 and 110 MPa were used to cast mater...

Full description

Bibliographic Details
Main Authors: Kristoffersen Martin, Toreskås Oda Lunde, Dey Sumita, Børvik Tore
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2021/04/epjconf_dymat2021_02001.pdf
Description
Summary:The ballistic perforation resistance of 50 mm thick concrete slabs impacted by 20 mm diameter ogive-nose steel projectiles is investigated experimentally and numerically. Three commercially produced concretes with nominal unconfined compressive strengths of 35, 75 and 110 MPa were used to cast material test specimens and slabs. After curing, ballistic impact tests were carried out to determine the ballistic limit curve and velocity for each slab quality. Material tests instrumented with digital image correlation (DIC) were conducted along the ballistic impact tests. DIC measurements were used to establish engineering stress-strain curves for calibration of a modified version of the Holmquist-Johnson-Cook concrete model. Finite element simulations of the impact tests gave good conservative predictions.
ISSN:2100-014X