Summary: | Fluoranthene (FT) is a polycyclic aromatic hydrocarbon (PAH), consisting of naphthalene and benzene rings connected by a five-member ring. It is widespread in the environment. The hydrophobicity of FT limits its availability for biological uptake and degradation. In this study, hydroxypropyl β-cyclodextrin oligomers (HP-β-CD-ol) were synthesized with epichlorohydrin (EP), while the solubility enhancement of FT by HP-β-CD-ol was investigated in water. The synthesized HP-β-CD-ol was characterized by MALDI-TOF mass spectrometry (MS), 1H NMR, and 13C NMR spectroscopy. The solubility of FT increased 178-fold due to the complex formation with HP-β-CD oligomers. The inclusion complexes of FT/HP-β-CD-ol were analyzed using Fourier-Transform Infrared (FT-IR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM), and Nuclear Overhauser Effect Spectroscopy Nuclear magnetic resonance (NOESY NMR) spectroscopy. On the basis of these results, HP-β-CD-ol is recommended as a potential solubilizer for the development of PAH removal systems.
|