Structure–function studies of ultrahigh molecular weight isoprenes provide key insights into their biosynthesis

Kajiura and Yoshizawa et al. identify three new prenyltransferases in the tree Eucommia ulmoides that synthesize exceptionally high molecular weight trans-1,4-polyisoprene (TPI). Through crystal structure and mutational analyses, they identify key residues required for TPI synthesis and reveal its f...

Full description

Bibliographic Details
Main Authors: Hiroyuki Kajiura, Takuya Yoshizawa, Yuji Tokumoto, Nobuaki Suzuki, Shinya Takeno, Kanokwan Jumtee Takeno, Takuya Yamashita, Shun-ichi Tanaka, Yoshinobu Kaneko, Kazuhito Fujiyama, Hiroyoshi Matsumura, Yoshihisa Nakazawa
Format: Article
Language:English
Published: Nature Publishing Group 2021-02-01
Series:Communications Biology
Online Access:https://doi.org/10.1038/s42003-021-01739-5
id doaj-0d8d4e20f5c54474bdd6cf4c60bfba98
record_format Article
spelling doaj-0d8d4e20f5c54474bdd6cf4c60bfba982021-02-21T12:27:29ZengNature Publishing GroupCommunications Biology2399-36422021-02-014111310.1038/s42003-021-01739-5Structure–function studies of ultrahigh molecular weight isoprenes provide key insights into their biosynthesisHiroyuki Kajiura0Takuya Yoshizawa1Yuji Tokumoto2Nobuaki Suzuki3Shinya Takeno4Kanokwan Jumtee Takeno5Takuya Yamashita6Shun-ichi Tanaka7Yoshinobu Kaneko8Kazuhito Fujiyama9Hiroyoshi Matsumura10Yoshihisa Nakazawa11International Center for Biotechnology, Osaka UniversityDepartment of Biotechnology, College of Life Sciences, Ritsumeikan UniversityTechnical Research Institute, Hitachi Zosen CorporationTechnical Research Institute, Hitachi Zosen CorporationTechnical Research Institute, Hitachi Zosen CorporationTechnical Research Institute, Hitachi Zosen CorporationDepartment of Biotechnology, College of Life Sciences, Ritsumeikan UniversityDepartment of Biotechnology, College of Life Sciences, Ritsumeikan UniversityYeast Genetic Resources Lab, Graduate School of Engineering, Osaka UniversityInternational Center for Biotechnology, Osaka UniversityDepartment of Biotechnology, College of Life Sciences, Ritsumeikan UniversityTechnical Research Institute, Hitachi Zosen CorporationKajiura and Yoshizawa et al. identify three new prenyltransferases in the tree Eucommia ulmoides that synthesize exceptionally high molecular weight trans-1,4-polyisoprene (TPI). Through crystal structure and mutational analyses, they identify key residues required for TPI synthesis and reveal its functional importance in seed development.https://doi.org/10.1038/s42003-021-01739-5
collection DOAJ
language English
format Article
sources DOAJ
author Hiroyuki Kajiura
Takuya Yoshizawa
Yuji Tokumoto
Nobuaki Suzuki
Shinya Takeno
Kanokwan Jumtee Takeno
Takuya Yamashita
Shun-ichi Tanaka
Yoshinobu Kaneko
Kazuhito Fujiyama
Hiroyoshi Matsumura
Yoshihisa Nakazawa
spellingShingle Hiroyuki Kajiura
Takuya Yoshizawa
Yuji Tokumoto
Nobuaki Suzuki
Shinya Takeno
Kanokwan Jumtee Takeno
Takuya Yamashita
Shun-ichi Tanaka
Yoshinobu Kaneko
Kazuhito Fujiyama
Hiroyoshi Matsumura
Yoshihisa Nakazawa
Structure–function studies of ultrahigh molecular weight isoprenes provide key insights into their biosynthesis
Communications Biology
author_facet Hiroyuki Kajiura
Takuya Yoshizawa
Yuji Tokumoto
Nobuaki Suzuki
Shinya Takeno
Kanokwan Jumtee Takeno
Takuya Yamashita
Shun-ichi Tanaka
Yoshinobu Kaneko
Kazuhito Fujiyama
Hiroyoshi Matsumura
Yoshihisa Nakazawa
author_sort Hiroyuki Kajiura
title Structure–function studies of ultrahigh molecular weight isoprenes provide key insights into their biosynthesis
title_short Structure–function studies of ultrahigh molecular weight isoprenes provide key insights into their biosynthesis
title_full Structure–function studies of ultrahigh molecular weight isoprenes provide key insights into their biosynthesis
title_fullStr Structure–function studies of ultrahigh molecular weight isoprenes provide key insights into their biosynthesis
title_full_unstemmed Structure–function studies of ultrahigh molecular weight isoprenes provide key insights into their biosynthesis
title_sort structure–function studies of ultrahigh molecular weight isoprenes provide key insights into their biosynthesis
publisher Nature Publishing Group
series Communications Biology
issn 2399-3642
publishDate 2021-02-01
description Kajiura and Yoshizawa et al. identify three new prenyltransferases in the tree Eucommia ulmoides that synthesize exceptionally high molecular weight trans-1,4-polyisoprene (TPI). Through crystal structure and mutational analyses, they identify key residues required for TPI synthesis and reveal its functional importance in seed development.
url https://doi.org/10.1038/s42003-021-01739-5
work_keys_str_mv AT hiroyukikajiura structurefunctionstudiesofultrahighmolecularweightisoprenesprovidekeyinsightsintotheirbiosynthesis
AT takuyayoshizawa structurefunctionstudiesofultrahighmolecularweightisoprenesprovidekeyinsightsintotheirbiosynthesis
AT yujitokumoto structurefunctionstudiesofultrahighmolecularweightisoprenesprovidekeyinsightsintotheirbiosynthesis
AT nobuakisuzuki structurefunctionstudiesofultrahighmolecularweightisoprenesprovidekeyinsightsintotheirbiosynthesis
AT shinyatakeno structurefunctionstudiesofultrahighmolecularweightisoprenesprovidekeyinsightsintotheirbiosynthesis
AT kanokwanjumteetakeno structurefunctionstudiesofultrahighmolecularweightisoprenesprovidekeyinsightsintotheirbiosynthesis
AT takuyayamashita structurefunctionstudiesofultrahighmolecularweightisoprenesprovidekeyinsightsintotheirbiosynthesis
AT shunichitanaka structurefunctionstudiesofultrahighmolecularweightisoprenesprovidekeyinsightsintotheirbiosynthesis
AT yoshinobukaneko structurefunctionstudiesofultrahighmolecularweightisoprenesprovidekeyinsightsintotheirbiosynthesis
AT kazuhitofujiyama structurefunctionstudiesofultrahighmolecularweightisoprenesprovidekeyinsightsintotheirbiosynthesis
AT hiroyoshimatsumura structurefunctionstudiesofultrahighmolecularweightisoprenesprovidekeyinsightsintotheirbiosynthesis
AT yoshihisanakazawa structurefunctionstudiesofultrahighmolecularweightisoprenesprovidekeyinsightsintotheirbiosynthesis
_version_ 1724257995280351232