Laser-Ablative Synthesis of Isotope-Enriched Samarium Oxide Nanoparticles for Nuclear Nanomedicine

Nuclear nanomedicine is an emerging field, which utilizes nanoformulations of nuclear agents to increase their local concentration at targeted sites for a more effective nuclear therapy at a considerably reduced radiation dosage. This field needs the development of methods for controlled fabrication...

Full description

Bibliographic Details
Main Authors: Elena Popova-Kuznetsova, Gleb Tikhonowski, Anton A. Popov, Vladimir Duflot, Sergey Deyev, Sergey Klimentov, Irina Zavestovskaya, Paras N. Prasad, Andrei V. Kabashin
Format: Article
Language:English
Published: MDPI AG 2019-12-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/10/1/69
Description
Summary:Nuclear nanomedicine is an emerging field, which utilizes nanoformulations of nuclear agents to increase their local concentration at targeted sites for a more effective nuclear therapy at a considerably reduced radiation dosage. This field needs the development of methods for controlled fabrication of nuclear agents carrying nanoparticles with low polydispersity and with high colloidal stability in aqueous dispersions. In this paper, we apply methods of femtosecond (fs) laser ablation in deionized water to fabricate stable aqueous dispersion of <sup>152</sup>Sm-enriched samarium oxide nanoparticles (NPs), which can capture neutrons to become <sup>153</sup>Sm beta-emitters for nuclear therapy. We show that direct ablation of a <sup>152</sup>Sm-enriched samarium oxide target leads to widely size- and shape-dispersed populations of NPs with low colloidal stability. However, by applying a second fs laser fragmentation step to the dispersion of initially formed colloids, we achieve full homogenization of NPs size characteristics, while keeping the same composition. We also demonstrate the possibility for wide-range tuning of the mean size of Sm-based NPs by varying laser energy during the ablation or fragmentation step. The final product presents dispersed solutions of samarium oxide NPs with relatively narrow size distribution, having spherical shape, a controlled mean size between 7 and 70 nm and high colloidal stability. The formed NPs can also be of importance for catalytic and biomedical applications.
ISSN:2079-4991