Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking?

A stable walking pattern is presumably essential to avoid falls. Stability of walking is most accurately determined by the short-term local dynamic stability (maximum Lyapunov exponent) of the body centre of mass. In many studies related to fall risk, however, variability of step width is considered...

Full description

Bibliographic Details
Main Authors: Niklas König Ignasiak, Deepak K Ravi, Stefan Orter, Seyyed Hamed Hosseini Nasab, William R Taylor, Navrag B Singh
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0217460
id doaj-0db6909683f245bcb7a3165d6cababc6
record_format Article
spelling doaj-0db6909683f245bcb7a3165d6cababc62021-03-03T20:39:08ZengPublic Library of Science (PLoS)PLoS ONE1932-62032019-01-01145e021746010.1371/journal.pone.0217460Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking?Niklas König IgnasiakDeepak K RaviStefan OrterSeyyed Hamed Hosseini NasabWilliam R TaylorNavrag B SinghA stable walking pattern is presumably essential to avoid falls. Stability of walking is most accurately determined by the short-term local dynamic stability (maximum Lyapunov exponent) of the body centre of mass. In many studies related to fall risk, however, variability of step width is considered to be indicative of the stability of the centre of mass during walking. However, other footfall parameters, in particular variability of stride time, have also been associated with increased risk for falling. Therefore, the aim of this study was to investigate the association between short-term local dynamic stability of the body centre of mass and different measures of footfall variability. Twenty subjects performed unperturbed walking trials on a treadmill and under increased (addition of 40% body weight) and decreased (harness system) demands to stabilise the body centre of mass. Association between stability of the centre of mass and footfall parameters was established using a structural equation model. Walking with additional body weight lead to greater instability of the centre of mass and increased stride time variability, however had no effect on step width variability. Supported walking in the harness system did not increase centre of mass stability further, however, led to a significant decrease of step width and increase in stride time variability. A structural equation model could only predict 8% of the variance of the centre of mass stability after variability of step width, stride time and stride length were included. A model which included only step width variability as exogenous variable, failed to predict centre of mass stability. Because of the failure to predict centre of mass stability in this study, it appears, that the stability of the centre of mass is controlled by more complex interaction of sagittal and frontal plane temporal and spatial footfall parameters, than those observed by standard variability measures. Anyway, this study does not support the application of step width variability as indicator for medio-lateral stability of the centre of mass during walking.https://doi.org/10.1371/journal.pone.0217460
collection DOAJ
language English
format Article
sources DOAJ
author Niklas König Ignasiak
Deepak K Ravi
Stefan Orter
Seyyed Hamed Hosseini Nasab
William R Taylor
Navrag B Singh
spellingShingle Niklas König Ignasiak
Deepak K Ravi
Stefan Orter
Seyyed Hamed Hosseini Nasab
William R Taylor
Navrag B Singh
Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking?
PLoS ONE
author_facet Niklas König Ignasiak
Deepak K Ravi
Stefan Orter
Seyyed Hamed Hosseini Nasab
William R Taylor
Navrag B Singh
author_sort Niklas König Ignasiak
title Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking?
title_short Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking?
title_full Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking?
title_fullStr Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking?
title_full_unstemmed Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking?
title_sort does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking?
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2019-01-01
description A stable walking pattern is presumably essential to avoid falls. Stability of walking is most accurately determined by the short-term local dynamic stability (maximum Lyapunov exponent) of the body centre of mass. In many studies related to fall risk, however, variability of step width is considered to be indicative of the stability of the centre of mass during walking. However, other footfall parameters, in particular variability of stride time, have also been associated with increased risk for falling. Therefore, the aim of this study was to investigate the association between short-term local dynamic stability of the body centre of mass and different measures of footfall variability. Twenty subjects performed unperturbed walking trials on a treadmill and under increased (addition of 40% body weight) and decreased (harness system) demands to stabilise the body centre of mass. Association between stability of the centre of mass and footfall parameters was established using a structural equation model. Walking with additional body weight lead to greater instability of the centre of mass and increased stride time variability, however had no effect on step width variability. Supported walking in the harness system did not increase centre of mass stability further, however, led to a significant decrease of step width and increase in stride time variability. A structural equation model could only predict 8% of the variance of the centre of mass stability after variability of step width, stride time and stride length were included. A model which included only step width variability as exogenous variable, failed to predict centre of mass stability. Because of the failure to predict centre of mass stability in this study, it appears, that the stability of the centre of mass is controlled by more complex interaction of sagittal and frontal plane temporal and spatial footfall parameters, than those observed by standard variability measures. Anyway, this study does not support the application of step width variability as indicator for medio-lateral stability of the centre of mass during walking.
url https://doi.org/10.1371/journal.pone.0217460
work_keys_str_mv AT niklaskonigignasiak doesvariabilityoffootfallkinematicscorrelatewithdynamicstabilityofthecentreofmassduringwalking
AT deepakkravi doesvariabilityoffootfallkinematicscorrelatewithdynamicstabilityofthecentreofmassduringwalking
AT stefanorter doesvariabilityoffootfallkinematicscorrelatewithdynamicstabilityofthecentreofmassduringwalking
AT seyyedhamedhosseininasab doesvariabilityoffootfallkinematicscorrelatewithdynamicstabilityofthecentreofmassduringwalking
AT williamrtaylor doesvariabilityoffootfallkinematicscorrelatewithdynamicstabilityofthecentreofmassduringwalking
AT navragbsingh doesvariabilityoffootfallkinematicscorrelatewithdynamicstabilityofthecentreofmassduringwalking
_version_ 1714821236645691392