Summary: | New validation of the well-known Monte Carlo code MCNP5 against measured criticality and kinetics data for the coupled fast-thermal HERBE System at the Reactor B critical assembly is shown in this paper. Results of earlier calculations of these criticality and kinetics parameters, done by combination of transport and diffusion codes using two-dimension geometry model are compared to results of new calculations carried out by the MCNP5 code in three-dimension geometry. Satisfactory agreements in comparison of new results with experimental data, in spite complex heterogeneous composition of the HERBE core, are achieved confirming that MCNP5 code could apply successfully to study on HERBE kinetics parameters after uncertainties in impurities in material compositions and positions of fuel elements in fast zone were removed.
|