High Temperature Dry Sliding Friction and Wear Performance of Laser Cladding WC/Ni Composite Coating

Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning elec...

Full description

Bibliographic Details
Main Authors: YANG Jiao-xi, ZHANG Jian-quan, CHANG Wan-qing, WANG Yan-fang, CHEN Hong, WANG Xi-bing
Format: Article
Language:zho
Published: Journal of Materials Engineering 2016-06-01
Series:Journal of Materials Engineering
Subjects:
Online Access:http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.06.017
Description
Summary:Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning electron microscopy (SEM) equipped with an energy dispersive spectroscopy (EDS) for elemental composition. The results show that the high temperature wear resistance of the laser clad WC/Ni-based composite coatings is improved significantly with WC mass fraction increasing. The 60% agglomerate WC/Ni composite coating has optimal high temperature wear resistance. High temperature wear mechanism of 60% WC/Ni composite coating is from abrasive wear of low temperature into composite function of the oxidation wear and abrasive wear.
ISSN:1001-4381
1001-4381