Discrete configurational mechanics for the computational study of atomistic fracture mechanics

We formulate discrete configurational mechanics in an atomistic setting, discuss the corresponding computational details, and demonstrate its utility via computational analyses of atomistic fracture mechanics problems. To this end, we first propose a novel Configurational-Force-Criterion (CFC) to pr...

Full description

Bibliographic Details
Main Authors: S. Elmira Birang O., Paul Steinmann
Format: Article
Language:English
Published: Elsevier 2021-07-01
Series:Forces in Mechanics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666359720300093
id doaj-0e3833165d3c44f1a2ff8e441a811af7
record_format Article
spelling doaj-0e3833165d3c44f1a2ff8e441a811af72021-05-01T04:36:20ZengElsevierForces in Mechanics2666-35972021-07-012100009Discrete configurational mechanics for the computational study of atomistic fracture mechanicsS. Elmira Birang O.0Paul Steinmann1Corresponding author at: Institute of Applied Mechanics (LTM), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.; Institute of Applied Mechanics (LTM), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Central Institute for Scientific Computing (ZISC), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, GermanyInstitute of Applied Mechanics (LTM), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Glasgow Computational Engineering Centre, University of Glasgow, Glasgow, United KingdomWe formulate discrete configurational mechanics in an atomistic setting, discuss the corresponding computational details, and demonstrate its utility via computational analyses of atomistic fracture mechanics problems. To this end, we first propose a novel Configurational-Force-Criterion (CFC) to predict crack propagation into an atomic crystalline lattice. Thereby, specifically, the CFC relies on comparing discrete configurational forces with a corresponding Crack-Propagation-Threshold (CPT) in the quasi-static approximation of atomistic systems at zero Kelvin. Next, based on the CFC, we introduce a quasi-static computational atomistic crack propagation algorithm. Therein, whenever an atomic pair meets the CFC, we modify the lattice connectivity by deleting the corresponding interatomic bond, thus resulting in true irreversibility, i.e. dissipation upon crack extension. Finally, based on different choices for the magnitude of the CPT employed in the CFC, we demonstrate suitability and versatility of discrete configurational mechanics in analyzing atomistic fracture mechanics.http://www.sciencedirect.com/science/article/pii/S2666359720300093Atomistic configurational mechanicsFracture criterionCrack propagation
collection DOAJ
language English
format Article
sources DOAJ
author S. Elmira Birang O.
Paul Steinmann
spellingShingle S. Elmira Birang O.
Paul Steinmann
Discrete configurational mechanics for the computational study of atomistic fracture mechanics
Forces in Mechanics
Atomistic configurational mechanics
Fracture criterion
Crack propagation
author_facet S. Elmira Birang O.
Paul Steinmann
author_sort S. Elmira Birang O.
title Discrete configurational mechanics for the computational study of atomistic fracture mechanics
title_short Discrete configurational mechanics for the computational study of atomistic fracture mechanics
title_full Discrete configurational mechanics for the computational study of atomistic fracture mechanics
title_fullStr Discrete configurational mechanics for the computational study of atomistic fracture mechanics
title_full_unstemmed Discrete configurational mechanics for the computational study of atomistic fracture mechanics
title_sort discrete configurational mechanics for the computational study of atomistic fracture mechanics
publisher Elsevier
series Forces in Mechanics
issn 2666-3597
publishDate 2021-07-01
description We formulate discrete configurational mechanics in an atomistic setting, discuss the corresponding computational details, and demonstrate its utility via computational analyses of atomistic fracture mechanics problems. To this end, we first propose a novel Configurational-Force-Criterion (CFC) to predict crack propagation into an atomic crystalline lattice. Thereby, specifically, the CFC relies on comparing discrete configurational forces with a corresponding Crack-Propagation-Threshold (CPT) in the quasi-static approximation of atomistic systems at zero Kelvin. Next, based on the CFC, we introduce a quasi-static computational atomistic crack propagation algorithm. Therein, whenever an atomic pair meets the CFC, we modify the lattice connectivity by deleting the corresponding interatomic bond, thus resulting in true irreversibility, i.e. dissipation upon crack extension. Finally, based on different choices for the magnitude of the CPT employed in the CFC, we demonstrate suitability and versatility of discrete configurational mechanics in analyzing atomistic fracture mechanics.
topic Atomistic configurational mechanics
Fracture criterion
Crack propagation
url http://www.sciencedirect.com/science/article/pii/S2666359720300093
work_keys_str_mv AT selmirabirango discreteconfigurationalmechanicsforthecomputationalstudyofatomisticfracturemechanics
AT paulsteinmann discreteconfigurationalmechanicsforthecomputationalstudyofatomisticfracturemechanics
_version_ 1721496889932644352