Discrete configurational mechanics for the computational study of atomistic fracture mechanics
We formulate discrete configurational mechanics in an atomistic setting, discuss the corresponding computational details, and demonstrate its utility via computational analyses of atomistic fracture mechanics problems. To this end, we first propose a novel Configurational-Force-Criterion (CFC) to pr...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-07-01
|
Series: | Forces in Mechanics |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2666359720300093 |
id |
doaj-0e3833165d3c44f1a2ff8e441a811af7 |
---|---|
record_format |
Article |
spelling |
doaj-0e3833165d3c44f1a2ff8e441a811af72021-05-01T04:36:20ZengElsevierForces in Mechanics2666-35972021-07-012100009Discrete configurational mechanics for the computational study of atomistic fracture mechanicsS. Elmira Birang O.0Paul Steinmann1Corresponding author at: Institute of Applied Mechanics (LTM), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.; Institute of Applied Mechanics (LTM), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Central Institute for Scientific Computing (ZISC), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, GermanyInstitute of Applied Mechanics (LTM), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Glasgow Computational Engineering Centre, University of Glasgow, Glasgow, United KingdomWe formulate discrete configurational mechanics in an atomistic setting, discuss the corresponding computational details, and demonstrate its utility via computational analyses of atomistic fracture mechanics problems. To this end, we first propose a novel Configurational-Force-Criterion (CFC) to predict crack propagation into an atomic crystalline lattice. Thereby, specifically, the CFC relies on comparing discrete configurational forces with a corresponding Crack-Propagation-Threshold (CPT) in the quasi-static approximation of atomistic systems at zero Kelvin. Next, based on the CFC, we introduce a quasi-static computational atomistic crack propagation algorithm. Therein, whenever an atomic pair meets the CFC, we modify the lattice connectivity by deleting the corresponding interatomic bond, thus resulting in true irreversibility, i.e. dissipation upon crack extension. Finally, based on different choices for the magnitude of the CPT employed in the CFC, we demonstrate suitability and versatility of discrete configurational mechanics in analyzing atomistic fracture mechanics.http://www.sciencedirect.com/science/article/pii/S2666359720300093Atomistic configurational mechanicsFracture criterionCrack propagation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
S. Elmira Birang O. Paul Steinmann |
spellingShingle |
S. Elmira Birang O. Paul Steinmann Discrete configurational mechanics for the computational study of atomistic fracture mechanics Forces in Mechanics Atomistic configurational mechanics Fracture criterion Crack propagation |
author_facet |
S. Elmira Birang O. Paul Steinmann |
author_sort |
S. Elmira Birang O. |
title |
Discrete configurational mechanics for the computational study of atomistic fracture mechanics |
title_short |
Discrete configurational mechanics for the computational study of atomistic fracture mechanics |
title_full |
Discrete configurational mechanics for the computational study of atomistic fracture mechanics |
title_fullStr |
Discrete configurational mechanics for the computational study of atomistic fracture mechanics |
title_full_unstemmed |
Discrete configurational mechanics for the computational study of atomistic fracture mechanics |
title_sort |
discrete configurational mechanics for the computational study of atomistic fracture mechanics |
publisher |
Elsevier |
series |
Forces in Mechanics |
issn |
2666-3597 |
publishDate |
2021-07-01 |
description |
We formulate discrete configurational mechanics in an atomistic setting, discuss the corresponding computational details, and demonstrate its utility via computational analyses of atomistic fracture mechanics problems. To this end, we first propose a novel Configurational-Force-Criterion (CFC) to predict crack propagation into an atomic crystalline lattice. Thereby, specifically, the CFC relies on comparing discrete configurational forces with a corresponding Crack-Propagation-Threshold (CPT) in the quasi-static approximation of atomistic systems at zero Kelvin. Next, based on the CFC, we introduce a quasi-static computational atomistic crack propagation algorithm. Therein, whenever an atomic pair meets the CFC, we modify the lattice connectivity by deleting the corresponding interatomic bond, thus resulting in true irreversibility, i.e. dissipation upon crack extension. Finally, based on different choices for the magnitude of the CPT employed in the CFC, we demonstrate suitability and versatility of discrete configurational mechanics in analyzing atomistic fracture mechanics. |
topic |
Atomistic configurational mechanics Fracture criterion Crack propagation |
url |
http://www.sciencedirect.com/science/article/pii/S2666359720300093 |
work_keys_str_mv |
AT selmirabirango discreteconfigurationalmechanicsforthecomputationalstudyofatomisticfracturemechanics AT paulsteinmann discreteconfigurationalmechanicsforthecomputationalstudyofatomisticfracturemechanics |
_version_ |
1721496889932644352 |