Combined use of weather forecasting and satellite remote sensing information for fire risk, fire and fire impact monitoring

The restoration of fire-affected forest areas needs to be combined with their future protection from renewed catastrophic fires, such as those that occurred in Greece during the 2007 summer season. The present work demonstrates that the use of various sources of satellite data in conjunction with we...

Full description

Bibliographic Details
Main Authors: Wolfgang Knorr, Ioannis Pytharoulis, George P. Petropoulos, et al.
Format: Article
Language:English
Published: International Academy of Ecology and Environmental Sciences 2011-06-01
Series:Computational Ecology and Software
Subjects:
Online Access:http://www.iaees.org/publications/journals/ces/articles/2011-1(2)/Combined-use-of-weather-forecasting-and-satellite.pdf
Description
Summary:The restoration of fire-affected forest areas needs to be combined with their future protection from renewed catastrophic fires, such as those that occurred in Greece during the 2007 summer season. The present work demonstrates that the use of various sources of satellite data in conjunction with weather forecast information is capable of providing valuable information for the characterization of fire danger with the purpose of protecting the Greek national forest areas. This study shows that favourable meteorological conditions have contributed to the fire outbreak during the days of the unusually damaging fires in Peloponnese as well as Euboia (modern Greek: Evia) at the end of August 2007. During those days, Greece was located between an extended high pressure system in Central Europe and a low pressure system in the Middle East. Their combination resulted in strong north-northeasterly winds in the Aegean Sea. As a consequence, strong winds were also observed in the regions of Evia and Peloponnese, especially in mountainous areas. The analysis of satellite images showing smoke emitted from the fires corroborates the results from the weather forecasts. A further analysis using the Fraction of Absorbed Photosyntetically Active Radiation (FAPAR) as an indicator of active vegetation shows the extent of the destruction caused by the fire. The position of the burned areas coincides with that of the active fires detected in the earlier satellite image. Using the annual maximum FAPAR as an indicator of regional vegetation density, it was found that only regions with relatively high FAPAR were burned.
ISSN:2220-721X