Gold and silver nanocomposite-based biostable and biocompatible electronic textile for wearable electromyographic biosensors

Wearable biosensors have received significant attention due to the possibility of measuring physiological signals on demand. Particularly, the monitoring of electromyographic (EMG) signals on demand by wearable platforms has significant potential to revolutionize the diagnostics and treatment of neu...

Full description

Bibliographic Details
Main Authors: Taehwan Lim, Huanan Zhang, Sohee Lee
Format: Article
Language:English
Published: AIP Publishing LLC 2021-09-01
Series:APL Materials
Online Access:http://dx.doi.org/10.1063/5.0058617
id doaj-0e5faac4a79240f18e0783d13b6d395e
record_format Article
spelling doaj-0e5faac4a79240f18e0783d13b6d395e2021-10-06T14:17:27ZengAIP Publishing LLCAPL Materials2166-532X2021-09-0199091113091113-910.1063/5.0058617Gold and silver nanocomposite-based biostable and biocompatible electronic textile for wearable electromyographic biosensorsTaehwan Lim0Huanan Zhang1Sohee Lee2Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, USADepartment of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, USADepartment of Clothing and Textiles, Gyeongsang National University, Jinju 52828, South KoreaWearable biosensors have received significant attention due to the possibility of measuring physiological signals on demand. Particularly, the monitoring of electromyographic (EMG) signals on demand by wearable platforms has significant potential to revolutionize the diagnostics and treatment of neuromuscular diseases and for advancing human–computer interfaces. Electronic textile-based biosensors have several advantages, including the simple scale-up process and the ease of fabricating multiple large area electrodes over the whole body to obtain precise measurements. Hence, the electronic textile production requires an affordable approach to fabricate biocompatible and biostable electronic circuits on textile materials. This work explores the possibility of combining screen printing and electrodeposition techniques to produce a biostable nanocomposite-based EMG biosensor on textile. Screen printing was selected to fabricate conductive fabrics that would ultimately be a highly durable textile-based sensor. Silver paste, including microscale silver flakes, was printed on PET/cotton blended fabrics. However, the microscale silver surface was limited for EMG sensors due to low surface area and toxicity, causing low signal detection performance and skin irritation. Gold nanoparticles (Au NPs) were deposited on silver flakes to address the requirements of high-performance and biocompatible biosensors. We confirmed that the gold functionalization improved electrical and electrochemical performance. In addition, various tests were performed to determine electrochemical and biological stability under physiological conditions. The test results proved that Au NPs have successfully encapsulated the surface of silver flakes, preventing the exposure of the silver to the physiological environment. EMG signal recording was performed to confirm the functionalization effect that improved the signal to noise ratio (SNR) of 12.5 with 120 nm Au NPs. Moreover, EMG sensing from bicep workouts and finger movements showed the high sensitivity of the electronic fabrics. Although the SNR of EMG signals dropped to 7.2 after a 15-time washing test, the stabilized SNR after 5 washing cycles indicated that the Au/Ag biosensors showed washing durability. The study demonstrates that this affordable approach can be considered for large-scale production of wearable EMG biosensors.http://dx.doi.org/10.1063/5.0058617
collection DOAJ
language English
format Article
sources DOAJ
author Taehwan Lim
Huanan Zhang
Sohee Lee
spellingShingle Taehwan Lim
Huanan Zhang
Sohee Lee
Gold and silver nanocomposite-based biostable and biocompatible electronic textile for wearable electromyographic biosensors
APL Materials
author_facet Taehwan Lim
Huanan Zhang
Sohee Lee
author_sort Taehwan Lim
title Gold and silver nanocomposite-based biostable and biocompatible electronic textile for wearable electromyographic biosensors
title_short Gold and silver nanocomposite-based biostable and biocompatible electronic textile for wearable electromyographic biosensors
title_full Gold and silver nanocomposite-based biostable and biocompatible electronic textile for wearable electromyographic biosensors
title_fullStr Gold and silver nanocomposite-based biostable and biocompatible electronic textile for wearable electromyographic biosensors
title_full_unstemmed Gold and silver nanocomposite-based biostable and biocompatible electronic textile for wearable electromyographic biosensors
title_sort gold and silver nanocomposite-based biostable and biocompatible electronic textile for wearable electromyographic biosensors
publisher AIP Publishing LLC
series APL Materials
issn 2166-532X
publishDate 2021-09-01
description Wearable biosensors have received significant attention due to the possibility of measuring physiological signals on demand. Particularly, the monitoring of electromyographic (EMG) signals on demand by wearable platforms has significant potential to revolutionize the diagnostics and treatment of neuromuscular diseases and for advancing human–computer interfaces. Electronic textile-based biosensors have several advantages, including the simple scale-up process and the ease of fabricating multiple large area electrodes over the whole body to obtain precise measurements. Hence, the electronic textile production requires an affordable approach to fabricate biocompatible and biostable electronic circuits on textile materials. This work explores the possibility of combining screen printing and electrodeposition techniques to produce a biostable nanocomposite-based EMG biosensor on textile. Screen printing was selected to fabricate conductive fabrics that would ultimately be a highly durable textile-based sensor. Silver paste, including microscale silver flakes, was printed on PET/cotton blended fabrics. However, the microscale silver surface was limited for EMG sensors due to low surface area and toxicity, causing low signal detection performance and skin irritation. Gold nanoparticles (Au NPs) were deposited on silver flakes to address the requirements of high-performance and biocompatible biosensors. We confirmed that the gold functionalization improved electrical and electrochemical performance. In addition, various tests were performed to determine electrochemical and biological stability under physiological conditions. The test results proved that Au NPs have successfully encapsulated the surface of silver flakes, preventing the exposure of the silver to the physiological environment. EMG signal recording was performed to confirm the functionalization effect that improved the signal to noise ratio (SNR) of 12.5 with 120 nm Au NPs. Moreover, EMG sensing from bicep workouts and finger movements showed the high sensitivity of the electronic fabrics. Although the SNR of EMG signals dropped to 7.2 after a 15-time washing test, the stabilized SNR after 5 washing cycles indicated that the Au/Ag biosensors showed washing durability. The study demonstrates that this affordable approach can be considered for large-scale production of wearable EMG biosensors.
url http://dx.doi.org/10.1063/5.0058617
work_keys_str_mv AT taehwanlim goldandsilvernanocompositebasedbiostableandbiocompatibleelectronictextileforwearableelectromyographicbiosensors
AT huananzhang goldandsilvernanocompositebasedbiostableandbiocompatibleelectronictextileforwearableelectromyographicbiosensors
AT soheelee goldandsilvernanocompositebasedbiostableandbiocompatibleelectronictextileforwearableelectromyographicbiosensors
_version_ 1716840506027147264