Numerical Simulation of Hot Jet Detonation with Different Ignition Positions
Ignition position is an important factor affecting flame propagation and deflagration-to-detonation transition (DDT). In this study, 2D reactive Navier−Stokes numerical studies have been performed to investigate the effects of ignition position on hot jet detonation initiation. Through the...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-10-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/9/21/4607 |
id |
doaj-0e8226107e7140ed81336f818c4fc572 |
---|---|
record_format |
Article |
spelling |
doaj-0e8226107e7140ed81336f818c4fc5722020-11-24T21:33:51ZengMDPI AGApplied Sciences2076-34172019-10-01921460710.3390/app9214607app9214607Numerical Simulation of Hot Jet Detonation with Different Ignition PositionsHongtao Zheng0Shizheng Liu1Ningbo Zhao2Xiang Chen3Xiongbin Jia4Zhiming Li5College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, ChinaCollege of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, ChinaCollege of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, ChinaCollege of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, ChinaCollege of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, ChinaCollege of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, ChinaIgnition position is an important factor affecting flame propagation and deflagration-to-detonation transition (DDT). In this study, 2D reactive Navier−Stokes numerical studies have been performed to investigate the effects of ignition position on hot jet detonation initiation. Through the stages of hot jet formation, vortex-flame interaction and detonation wave formation, the mechanism of the hot jet detonation initiation is analyzed in detail. The results indicate that the vortexes formed by hot jet entrain flame to increase the flame area rapidly, thus accelerating energy release and the formation of the detonation wave. With changing the ignition position from top to wall inside the hot jet tube, the faster velocity of hot jet will promote the vortex to entrain jet flame earlier, and the DDT time and distance will decrease. In addition, the effect of different wall ignition positions (from 0 mm to 150 mm away from top of hot jet tube) on DDT is also studied. When the ignition source is 30 mm away from the top of hot jet tube, the distance to initiate detonation wave is the shortest due to the highest jet intensity, the DDT time and distance are about 41.45% and 30.77% less than the top ignition.https://www.mdpi.com/2076-3417/9/21/4607hot jet detonation initiation techniqueflame accelerationdetonation combustionvortexignition position |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hongtao Zheng Shizheng Liu Ningbo Zhao Xiang Chen Xiongbin Jia Zhiming Li |
spellingShingle |
Hongtao Zheng Shizheng Liu Ningbo Zhao Xiang Chen Xiongbin Jia Zhiming Li Numerical Simulation of Hot Jet Detonation with Different Ignition Positions Applied Sciences hot jet detonation initiation technique flame acceleration detonation combustion vortex ignition position |
author_facet |
Hongtao Zheng Shizheng Liu Ningbo Zhao Xiang Chen Xiongbin Jia Zhiming Li |
author_sort |
Hongtao Zheng |
title |
Numerical Simulation of Hot Jet Detonation with Different Ignition Positions |
title_short |
Numerical Simulation of Hot Jet Detonation with Different Ignition Positions |
title_full |
Numerical Simulation of Hot Jet Detonation with Different Ignition Positions |
title_fullStr |
Numerical Simulation of Hot Jet Detonation with Different Ignition Positions |
title_full_unstemmed |
Numerical Simulation of Hot Jet Detonation with Different Ignition Positions |
title_sort |
numerical simulation of hot jet detonation with different ignition positions |
publisher |
MDPI AG |
series |
Applied Sciences |
issn |
2076-3417 |
publishDate |
2019-10-01 |
description |
Ignition position is an important factor affecting flame propagation and deflagration-to-detonation transition (DDT). In this study, 2D reactive Navier−Stokes numerical studies have been performed to investigate the effects of ignition position on hot jet detonation initiation. Through the stages of hot jet formation, vortex-flame interaction and detonation wave formation, the mechanism of the hot jet detonation initiation is analyzed in detail. The results indicate that the vortexes formed by hot jet entrain flame to increase the flame area rapidly, thus accelerating energy release and the formation of the detonation wave. With changing the ignition position from top to wall inside the hot jet tube, the faster velocity of hot jet will promote the vortex to entrain jet flame earlier, and the DDT time and distance will decrease. In addition, the effect of different wall ignition positions (from 0 mm to 150 mm away from top of hot jet tube) on DDT is also studied. When the ignition source is 30 mm away from the top of hot jet tube, the distance to initiate detonation wave is the shortest due to the highest jet intensity, the DDT time and distance are about 41.45% and 30.77% less than the top ignition. |
topic |
hot jet detonation initiation technique flame acceleration detonation combustion vortex ignition position |
url |
https://www.mdpi.com/2076-3417/9/21/4607 |
work_keys_str_mv |
AT hongtaozheng numericalsimulationofhotjetdetonationwithdifferentignitionpositions AT shizhengliu numericalsimulationofhotjetdetonationwithdifferentignitionpositions AT ningbozhao numericalsimulationofhotjetdetonationwithdifferentignitionpositions AT xiangchen numericalsimulationofhotjetdetonationwithdifferentignitionpositions AT xiongbinjia numericalsimulationofhotjetdetonationwithdifferentignitionpositions AT zhimingli numericalsimulationofhotjetdetonationwithdifferentignitionpositions |
_version_ |
1725951626977476608 |