KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALI

This paper aimed to elaborates and compares the performance of Fuzzy Time Series (FTS) model with Markov Chain (MC) model in forecasting the Gross Regional Domestic Product (GDRP) of Bali Province.  Both methods were considered as forecasting methods in soft modeling domain.  The data used was quart...

Full description

Bibliographic Details
Main Authors: I MADE ARYA ANTARA, I PUTU EKA N. KENCANA, I KOMANG GDE SUKARSA
Format: Article
Language:English
Published: Universitas Udayana 2014-08-01
Series:E-Jurnal Matematika
Subjects:
Online Access:https://ojs.unud.ac.id/index.php/mtk/article/view/12002
id doaj-0e8b5dbab788432b8c1772f3bcc4a1b8
record_format Article
spelling doaj-0e8b5dbab788432b8c1772f3bcc4a1b82020-11-25T00:14:45ZengUniversitas UdayanaE-Jurnal Matematika2303-17512014-08-013311612210.24843/MTK.2014.v03.i03.p07312002KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALII MADE ARYA ANTARA0I PUTU EKA N. KENCANA1I KOMANG GDE SUKARSA2Faculty of Mathematics and Natural Sciences, Udayana UniversityFaculty of Mathematics and Natural Sciences, Udayana UniversityFaculty of Mathematics and Natural Sciences, Udayana UniversityThis paper aimed to elaborates and compares the performance of Fuzzy Time Series (FTS) model with Markov Chain (MC) model in forecasting the Gross Regional Domestic Product (GDRP) of Bali Province.  Both methods were considered as forecasting methods in soft modeling domain.  The data used was quarterly data of Bali’s GDRP for year 1992 through 2013 from Indonesian Bureau of Statistic at Denpasar Office.  Inspite of using the original data, rate of change from two consecutive quarters was used to model. From the in-sample forecasting conducted, we got the Average Forecas­ting Error Rate (AFER) for FTS dan MC models as much as 0,78 percent and 2,74 percent, respec­tively.  Based-on these findings, FTS outperformed MC in in-sample forecasting for GDRP of Bali’s data.https://ojs.unud.ac.id/index.php/mtk/article/view/12002domestic productfuzzy modelingin-sample forecastingMarkov chain
collection DOAJ
language English
format Article
sources DOAJ
author I MADE ARYA ANTARA
I PUTU EKA N. KENCANA
I KOMANG GDE SUKARSA
spellingShingle I MADE ARYA ANTARA
I PUTU EKA N. KENCANA
I KOMANG GDE SUKARSA
KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALI
E-Jurnal Matematika
domestic product
fuzzy modeling
in-sample forecasting
Markov chain
author_facet I MADE ARYA ANTARA
I PUTU EKA N. KENCANA
I KOMANG GDE SUKARSA
author_sort I MADE ARYA ANTARA
title KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALI
title_short KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALI
title_full KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALI
title_fullStr KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALI
title_full_unstemmed KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALI
title_sort komparasi kinerja fuzzy time series dengan model rantai markov dalam meramalkan produk domestik regional bruto bali
publisher Universitas Udayana
series E-Jurnal Matematika
issn 2303-1751
publishDate 2014-08-01
description This paper aimed to elaborates and compares the performance of Fuzzy Time Series (FTS) model with Markov Chain (MC) model in forecasting the Gross Regional Domestic Product (GDRP) of Bali Province.  Both methods were considered as forecasting methods in soft modeling domain.  The data used was quarterly data of Bali’s GDRP for year 1992 through 2013 from Indonesian Bureau of Statistic at Denpasar Office.  Inspite of using the original data, rate of change from two consecutive quarters was used to model. From the in-sample forecasting conducted, we got the Average Forecas­ting Error Rate (AFER) for FTS dan MC models as much as 0,78 percent and 2,74 percent, respec­tively.  Based-on these findings, FTS outperformed MC in in-sample forecasting for GDRP of Bali’s data.
topic domestic product
fuzzy modeling
in-sample forecasting
Markov chain
url https://ojs.unud.ac.id/index.php/mtk/article/view/12002
work_keys_str_mv AT imadearyaantara komparasikinerjafuzzytimeseriesdenganmodelrantaimarkovdalammeramalkanprodukdomestikregionalbrutobali
AT iputuekankencana komparasikinerjafuzzytimeseriesdenganmodelrantaimarkovdalammeramalkanprodukdomestikregionalbrutobali
AT ikomanggdesukarsa komparasikinerjafuzzytimeseriesdenganmodelrantaimarkovdalammeramalkanprodukdomestikregionalbrutobali
_version_ 1725388695255646208