KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALI
This paper aimed to elaborates and compares the performance of Fuzzy Time Series (FTS) model with Markov Chain (MC) model in forecasting the Gross Regional Domestic Product (GDRP) of Bali Province. Both methods were considered as forecasting methods in soft modeling domain. The data used was quart...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Udayana
2014-08-01
|
Series: | E-Jurnal Matematika |
Subjects: | |
Online Access: | https://ojs.unud.ac.id/index.php/mtk/article/view/12002 |
id |
doaj-0e8b5dbab788432b8c1772f3bcc4a1b8 |
---|---|
record_format |
Article |
spelling |
doaj-0e8b5dbab788432b8c1772f3bcc4a1b82020-11-25T00:14:45ZengUniversitas UdayanaE-Jurnal Matematika2303-17512014-08-013311612210.24843/MTK.2014.v03.i03.p07312002KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALII MADE ARYA ANTARA0I PUTU EKA N. KENCANA1I KOMANG GDE SUKARSA2Faculty of Mathematics and Natural Sciences, Udayana UniversityFaculty of Mathematics and Natural Sciences, Udayana UniversityFaculty of Mathematics and Natural Sciences, Udayana UniversityThis paper aimed to elaborates and compares the performance of Fuzzy Time Series (FTS) model with Markov Chain (MC) model in forecasting the Gross Regional Domestic Product (GDRP) of Bali Province. Both methods were considered as forecasting methods in soft modeling domain. The data used was quarterly data of Bali’s GDRP for year 1992 through 2013 from Indonesian Bureau of Statistic at Denpasar Office. Inspite of using the original data, rate of change from two consecutive quarters was used to model. From the in-sample forecasting conducted, we got the Average Forecasting Error Rate (AFER) for FTS dan MC models as much as 0,78 percent and 2,74 percent, respectively. Based-on these findings, FTS outperformed MC in in-sample forecasting for GDRP of Bali’s data.https://ojs.unud.ac.id/index.php/mtk/article/view/12002domestic productfuzzy modelingin-sample forecastingMarkov chain |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
I MADE ARYA ANTARA I PUTU EKA N. KENCANA I KOMANG GDE SUKARSA |
spellingShingle |
I MADE ARYA ANTARA I PUTU EKA N. KENCANA I KOMANG GDE SUKARSA KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALI E-Jurnal Matematika domestic product fuzzy modeling in-sample forecasting Markov chain |
author_facet |
I MADE ARYA ANTARA I PUTU EKA N. KENCANA I KOMANG GDE SUKARSA |
author_sort |
I MADE ARYA ANTARA |
title |
KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALI |
title_short |
KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALI |
title_full |
KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALI |
title_fullStr |
KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALI |
title_full_unstemmed |
KOMPARASI KINERJA FUZZY TIME SERIES DENGAN MODEL RANTAI MARKOV DALAM MERAMALKAN PRODUK DOMESTIK REGIONAL BRUTO BALI |
title_sort |
komparasi kinerja fuzzy time series dengan model rantai markov dalam meramalkan produk domestik regional bruto bali |
publisher |
Universitas Udayana |
series |
E-Jurnal Matematika |
issn |
2303-1751 |
publishDate |
2014-08-01 |
description |
This paper aimed to elaborates and compares the performance of Fuzzy Time Series (FTS) model with Markov Chain (MC) model in forecasting the Gross Regional Domestic Product (GDRP) of Bali Province. Both methods were considered as forecasting methods in soft modeling domain. The data used was quarterly data of Bali’s GDRP for year 1992 through 2013 from Indonesian Bureau of Statistic at Denpasar Office. Inspite of using the original data, rate of change from two consecutive quarters was used to model. From the in-sample forecasting conducted, we got the Average Forecasting Error Rate (AFER) for FTS dan MC models as much as 0,78 percent and 2,74 percent, respectively. Based-on these findings, FTS outperformed MC in in-sample forecasting for GDRP of Bali’s data. |
topic |
domestic product fuzzy modeling in-sample forecasting Markov chain |
url |
https://ojs.unud.ac.id/index.php/mtk/article/view/12002 |
work_keys_str_mv |
AT imadearyaantara komparasikinerjafuzzytimeseriesdenganmodelrantaimarkovdalammeramalkanprodukdomestikregionalbrutobali AT iputuekankencana komparasikinerjafuzzytimeseriesdenganmodelrantaimarkovdalammeramalkanprodukdomestikregionalbrutobali AT ikomanggdesukarsa komparasikinerjafuzzytimeseriesdenganmodelrantaimarkovdalammeramalkanprodukdomestikregionalbrutobali |
_version_ |
1725388695255646208 |