Calderón–Zygmund theory for parabolic obstacle problems with nonstandard growth

We establish local Calderón–Zygmund estimates for solutions to certain parabolic problems with irregular obstacles and nonstandard p(x,t)${p(x,t)}$-growth. More precisely, we will show that the spatial gradient Du${Du}$ of the solution to the obstacle problem is as integrable as the obstacle ψ${\psi...

Full description

Bibliographic Details
Main Author: Erhardt André
Format: Article
Language:English
Published: De Gruyter 2014-02-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2013-0024
id doaj-0f034fe4d0a042edac16326d148d7a94
record_format Article
spelling doaj-0f034fe4d0a042edac16326d148d7a942021-09-06T19:39:53ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2014-02-0131154410.1515/anona-2013-0024Calderón–Zygmund theory for parabolic obstacle problems with nonstandard growthErhardt André0Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 11, 91058 Erlangen, GermanyWe establish local Calderón–Zygmund estimates for solutions to certain parabolic problems with irregular obstacles and nonstandard p(x,t)${p(x,t)}$-growth. More precisely, we will show that the spatial gradient Du${Du}$ of the solution to the obstacle problem is as integrable as the obstacle ψ${\psi }$, i.e. |Dψ|p(·),|∂tψ|γ1'∈L loc q⇒|Du|p(·)∈L loc q,foranyq>1,$ |D\psi |^{p(\,\cdot \,)},|\partial _t\psi |^{\gamma _1^{\prime }}\in L^q_\mathrm {loc}\Rightarrow |Du|^{p(\,\cdot \,)}\in L^q_\mathrm {loc},\quad \text{for any}~q>1, $ where γ1'=γ1γ1-1${\gamma _1^{\prime }=\frac{\gamma _1}{\gamma _1-1}}$ and γ1${\gamma _1}$ is the lower bound for p(·)${p(\,\cdot \,)}$.https://doi.org/10.1515/anona-2013-0024calderón–zygmund estimatesnonlinear parabolic obstacle problemsvariational inequalitynonstandard growthlocalizable solution35k8635b4535b5142b2049n60
collection DOAJ
language English
format Article
sources DOAJ
author Erhardt André
spellingShingle Erhardt André
Calderón–Zygmund theory for parabolic obstacle problems with nonstandard growth
Advances in Nonlinear Analysis
calderón–zygmund estimates
nonlinear parabolic obstacle problems
variational inequality
nonstandard growth
localizable solution
35k86
35b45
35b51
42b20
49n60
author_facet Erhardt André
author_sort Erhardt André
title Calderón–Zygmund theory for parabolic obstacle problems with nonstandard growth
title_short Calderón–Zygmund theory for parabolic obstacle problems with nonstandard growth
title_full Calderón–Zygmund theory for parabolic obstacle problems with nonstandard growth
title_fullStr Calderón–Zygmund theory for parabolic obstacle problems with nonstandard growth
title_full_unstemmed Calderón–Zygmund theory for parabolic obstacle problems with nonstandard growth
title_sort calderón–zygmund theory for parabolic obstacle problems with nonstandard growth
publisher De Gruyter
series Advances in Nonlinear Analysis
issn 2191-9496
2191-950X
publishDate 2014-02-01
description We establish local Calderón–Zygmund estimates for solutions to certain parabolic problems with irregular obstacles and nonstandard p(x,t)${p(x,t)}$-growth. More precisely, we will show that the spatial gradient Du${Du}$ of the solution to the obstacle problem is as integrable as the obstacle ψ${\psi }$, i.e. |Dψ|p(·),|∂tψ|γ1'∈L loc q⇒|Du|p(·)∈L loc q,foranyq>1,$ |D\psi |^{p(\,\cdot \,)},|\partial _t\psi |^{\gamma _1^{\prime }}\in L^q_\mathrm {loc}\Rightarrow |Du|^{p(\,\cdot \,)}\in L^q_\mathrm {loc},\quad \text{for any}~q>1, $ where γ1'=γ1γ1-1${\gamma _1^{\prime }=\frac{\gamma _1}{\gamma _1-1}}$ and γ1${\gamma _1}$ is the lower bound for p(·)${p(\,\cdot \,)}$.
topic calderón–zygmund estimates
nonlinear parabolic obstacle problems
variational inequality
nonstandard growth
localizable solution
35k86
35b45
35b51
42b20
49n60
url https://doi.org/10.1515/anona-2013-0024
work_keys_str_mv AT erhardtandre calderonzygmundtheoryforparabolicobstacleproblemswithnonstandardgrowth
_version_ 1717769862375276544