Dirichlet-Neumann bracketing for boundary-value problems on graphs
We consider the spectral structure of second order boundary-value problems on graphs. A variational formulation for boundary-value problems on graphs is given. As a consequence we can formulate an analogue of Dirichlet-Neumann bracketing for boundary-value problems on graphs. This in turn gives rise...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2005-08-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2005/93/abstr.html |
id |
doaj-0f0a9c523d994733a9297c23880bf55b |
---|---|
record_format |
Article |
spelling |
doaj-0f0a9c523d994733a9297c23880bf55b2020-11-24T21:08:52ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912005-08-01200593111Dirichlet-Neumann bracketing for boundary-value problems on graphsSonja CurrieBruce A. WatsonWe consider the spectral structure of second order boundary-value problems on graphs. A variational formulation for boundary-value problems on graphs is given. As a consequence we can formulate an analogue of Dirichlet-Neumann bracketing for boundary-value problems on graphs. This in turn gives rise to eigenvalue and eigenfunction asymptotic approximations.http://ejde.math.txstate.edu/Volumes/2005/93/abstr.htmlDifferential operatorsspectrumgraphs. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sonja Currie Bruce A. Watson |
spellingShingle |
Sonja Currie Bruce A. Watson Dirichlet-Neumann bracketing for boundary-value problems on graphs Electronic Journal of Differential Equations Differential operators spectrum graphs. |
author_facet |
Sonja Currie Bruce A. Watson |
author_sort |
Sonja Currie |
title |
Dirichlet-Neumann bracketing for boundary-value problems on graphs |
title_short |
Dirichlet-Neumann bracketing for boundary-value problems on graphs |
title_full |
Dirichlet-Neumann bracketing for boundary-value problems on graphs |
title_fullStr |
Dirichlet-Neumann bracketing for boundary-value problems on graphs |
title_full_unstemmed |
Dirichlet-Neumann bracketing for boundary-value problems on graphs |
title_sort |
dirichlet-neumann bracketing for boundary-value problems on graphs |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2005-08-01 |
description |
We consider the spectral structure of second order boundary-value problems on graphs. A variational formulation for boundary-value problems on graphs is given. As a consequence we can formulate an analogue of Dirichlet-Neumann bracketing for boundary-value problems on graphs. This in turn gives rise to eigenvalue and eigenfunction asymptotic approximations. |
topic |
Differential operators spectrum graphs. |
url |
http://ejde.math.txstate.edu/Volumes/2005/93/abstr.html |
work_keys_str_mv |
AT sonjacurrie dirichletneumannbracketingforboundaryvalueproblemsongraphs AT bruceawatson dirichletneumannbracketingforboundaryvalueproblemsongraphs |
_version_ |
1716759125164032000 |