Generalizations of graded second submodules
Let G be a group with identity e. Let R be a graded ring, I a graded ideal of R and M be a G-graded R-module. Let ψ: Sgr(M) → S gr(M) ∪ {∅} be a function, where Sgr(M) denote the set of all graded submodules of M. In this article, we introduce and study the concepts of graded ψ -second submodules an...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2021-08-01
|
Series: | Acta Universitatis Sapientiae: Mathematica |
Subjects: | |
Online Access: | https://doi.org/10.2478/ausm-2021-0009 |
id |
doaj-0f212025cbfc4e98a1cd526710c10ffd |
---|---|
record_format |
Article |
spelling |
doaj-0f212025cbfc4e98a1cd526710c10ffd2021-09-22T06:13:22ZengSciendoActa Universitatis Sapientiae: Mathematica2066-77522021-08-0113116418110.2478/ausm-2021-0009Generalizations of graded second submodulesGhiasvand Peyman0Farzalipour Farkhonde1Department of Mathematics, Payame Noor University, P.O.BOX 19395-3697 Tehran, Iran.Department of Mathematics, Payame Noor University, P.O.BOX 19395-3697 Tehran, Iran.Let G be a group with identity e. Let R be a graded ring, I a graded ideal of R and M be a G-graded R-module. Let ψ: Sgr(M) → S gr(M) ∪ {∅} be a function, where Sgr(M) denote the set of all graded submodules of M. In this article, we introduce and study the concepts of graded ψ -second submodules and graded I-second submodules of a graded R-module which are generalizations of graded second submodules of M and investigate some properties of this class of graded modules.https://doi.org/10.2478/ausm-2021-0009graded second submodulegraded ψ-second submodulegraded i-second submodule13a0216w50 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ghiasvand Peyman Farzalipour Farkhonde |
spellingShingle |
Ghiasvand Peyman Farzalipour Farkhonde Generalizations of graded second submodules Acta Universitatis Sapientiae: Mathematica graded second submodule graded ψ-second submodule graded i-second submodule 13a02 16w50 |
author_facet |
Ghiasvand Peyman Farzalipour Farkhonde |
author_sort |
Ghiasvand Peyman |
title |
Generalizations of graded second submodules |
title_short |
Generalizations of graded second submodules |
title_full |
Generalizations of graded second submodules |
title_fullStr |
Generalizations of graded second submodules |
title_full_unstemmed |
Generalizations of graded second submodules |
title_sort |
generalizations of graded second submodules |
publisher |
Sciendo |
series |
Acta Universitatis Sapientiae: Mathematica |
issn |
2066-7752 |
publishDate |
2021-08-01 |
description |
Let G be a group with identity e. Let R be a graded ring, I a graded ideal of R and M be a G-graded R-module. Let ψ: Sgr(M) → S gr(M) ∪ {∅} be a function, where Sgr(M) denote the set of all graded submodules of M. In this article, we introduce and study the concepts of graded ψ -second submodules and graded I-second submodules of a graded R-module which are generalizations of graded second submodules of M and investigate some properties of this class of graded modules. |
topic |
graded second submodule graded ψ-second submodule graded i-second submodule 13a02 16w50 |
url |
https://doi.org/10.2478/ausm-2021-0009 |
work_keys_str_mv |
AT ghiasvandpeyman generalizationsofgradedsecondsubmodules AT farzalipourfarkhonde generalizationsofgradedsecondsubmodules |
_version_ |
1717371725499334656 |