Generalizations of graded second submodules

Let G be a group with identity e. Let R be a graded ring, I a graded ideal of R and M be a G-graded R-module. Let ψ: Sgr(M) → S gr(M) ∪ {∅} be a function, where Sgr(M) denote the set of all graded submodules of M. In this article, we introduce and study the concepts of graded ψ -second submodules an...

Full description

Bibliographic Details
Main Authors: Ghiasvand Peyman, Farzalipour Farkhonde
Format: Article
Language:English
Published: Sciendo 2021-08-01
Series:Acta Universitatis Sapientiae: Mathematica
Subjects:
Online Access:https://doi.org/10.2478/ausm-2021-0009
id doaj-0f212025cbfc4e98a1cd526710c10ffd
record_format Article
spelling doaj-0f212025cbfc4e98a1cd526710c10ffd2021-09-22T06:13:22ZengSciendoActa Universitatis Sapientiae: Mathematica2066-77522021-08-0113116418110.2478/ausm-2021-0009Generalizations of graded second submodulesGhiasvand Peyman0Farzalipour Farkhonde1Department of Mathematics, Payame Noor University, P.O.BOX 19395-3697 Tehran, Iran.Department of Mathematics, Payame Noor University, P.O.BOX 19395-3697 Tehran, Iran.Let G be a group with identity e. Let R be a graded ring, I a graded ideal of R and M be a G-graded R-module. Let ψ: Sgr(M) → S gr(M) ∪ {∅} be a function, where Sgr(M) denote the set of all graded submodules of M. In this article, we introduce and study the concepts of graded ψ -second submodules and graded I-second submodules of a graded R-module which are generalizations of graded second submodules of M and investigate some properties of this class of graded modules.https://doi.org/10.2478/ausm-2021-0009graded second submodulegraded ψ-second submodulegraded i-second submodule13a0216w50
collection DOAJ
language English
format Article
sources DOAJ
author Ghiasvand Peyman
Farzalipour Farkhonde
spellingShingle Ghiasvand Peyman
Farzalipour Farkhonde
Generalizations of graded second submodules
Acta Universitatis Sapientiae: Mathematica
graded second submodule
graded ψ-second submodule
graded i-second submodule
13a02
16w50
author_facet Ghiasvand Peyman
Farzalipour Farkhonde
author_sort Ghiasvand Peyman
title Generalizations of graded second submodules
title_short Generalizations of graded second submodules
title_full Generalizations of graded second submodules
title_fullStr Generalizations of graded second submodules
title_full_unstemmed Generalizations of graded second submodules
title_sort generalizations of graded second submodules
publisher Sciendo
series Acta Universitatis Sapientiae: Mathematica
issn 2066-7752
publishDate 2021-08-01
description Let G be a group with identity e. Let R be a graded ring, I a graded ideal of R and M be a G-graded R-module. Let ψ: Sgr(M) → S gr(M) ∪ {∅} be a function, where Sgr(M) denote the set of all graded submodules of M. In this article, we introduce and study the concepts of graded ψ -second submodules and graded I-second submodules of a graded R-module which are generalizations of graded second submodules of M and investigate some properties of this class of graded modules.
topic graded second submodule
graded ψ-second submodule
graded i-second submodule
13a02
16w50
url https://doi.org/10.2478/ausm-2021-0009
work_keys_str_mv AT ghiasvandpeyman generalizationsofgradedsecondsubmodules
AT farzalipourfarkhonde generalizationsofgradedsecondsubmodules
_version_ 1717371725499334656