Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS
Background: The transcranial magnetic stimulation (TMS) paradigm short-latency sensory afferent inhibition (SAI) investigates sensori-motor integration. Conventionally, one stimulation intensity is used for the conditioning pulse to the peripheral nerve. Objective/hypothesis: To examine the variabil...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2011-10-01
|
Series: | Brain Stimulation |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1935861X10001646 |
id |
doaj-0f5acf53ae0147b4b31ef3d0eb6a28bb |
---|---|
record_format |
Article |
spelling |
doaj-0f5acf53ae0147b4b31ef3d0eb6a28bb2021-03-18T04:35:03ZengElsevierBrain Stimulation1935-861X2011-10-0144202209Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMSM. Fischer0M. Orth1Department of Neurology, Universitätsklinikum Ulm, Ulm, Germany; Department of Neurology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, GermanyDepartment of Neurology, Universitätsklinikum Ulm, Ulm, Germany; Department of Neurology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany; Correspondence: Dr. M. Orth, Department of Neurology, Universitätsklinikum Ulm, Oberer Eselsberg 45/1, 89081 Ulm, GermanyBackground: The transcranial magnetic stimulation (TMS) paradigm short-latency sensory afferent inhibition (SAI) investigates sensori-motor integration. Conventionally, one stimulation intensity is used for the conditioning pulse to the peripheral nerve. Objective/hypothesis: To examine the variability, the dimension of stimulus intensity, and recording site in SAI. Methods: In 17 healthy individuals three peripheral nerve stimulation intensities were used: Just above sensory threshold, just above motor threshold, and in between. Motor evoked potentials (MEPs) and long-loop reflexes were recorded from first dorsal interosseus (FDI) and abductor pollicis brevis (APB) before and after repetitive motor cortex TMS (1 Hz, 1800 stimuli at 95% resting motor threshold). Results: Between-subjects variability of SAI was higher than variability between sessions. Median, or ulnar, nerve stimulation decreased MEP size in FDI and APB at interstimulus intervals of N20, N20+2, and N20+4. Only with median nerve stimulation MEP size increased in APB, but not FDI, at N20+8 to N20+16. These effects increased with increasing stimulation intensity. RTMS reduced MEP size but had no effect on SAI, or transcortical reflexes. Conclusions: Effects on MEP size in SAI depend on stimulus intensity and are not limited to anatomically homotopic muscles. Inhibitory rTMS modulates motor output but not the interaction of sensory inputs with the motor cortex.http://www.sciencedirect.com/science/article/pii/S1935861X10001646transcranial magnetic stimulationshort latency afferent inhibitionlong-loop reflexsensori-motor integrationcortical relay |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. Fischer M. Orth |
spellingShingle |
M. Fischer M. Orth Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS Brain Stimulation transcranial magnetic stimulation short latency afferent inhibition long-loop reflex sensori-motor integration cortical relay |
author_facet |
M. Fischer M. Orth |
author_sort |
M. Fischer |
title |
Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS |
title_short |
Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS |
title_full |
Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS |
title_fullStr |
Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS |
title_full_unstemmed |
Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS |
title_sort |
short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 hz repetitive tms |
publisher |
Elsevier |
series |
Brain Stimulation |
issn |
1935-861X |
publishDate |
2011-10-01 |
description |
Background: The transcranial magnetic stimulation (TMS) paradigm short-latency sensory afferent inhibition (SAI) investigates sensori-motor integration. Conventionally, one stimulation intensity is used for the conditioning pulse to the peripheral nerve. Objective/hypothesis: To examine the variability, the dimension of stimulus intensity, and recording site in SAI. Methods: In 17 healthy individuals three peripheral nerve stimulation intensities were used: Just above sensory threshold, just above motor threshold, and in between. Motor evoked potentials (MEPs) and long-loop reflexes were recorded from first dorsal interosseus (FDI) and abductor pollicis brevis (APB) before and after repetitive motor cortex TMS (1 Hz, 1800 stimuli at 95% resting motor threshold). Results: Between-subjects variability of SAI was higher than variability between sessions. Median, or ulnar, nerve stimulation decreased MEP size in FDI and APB at interstimulus intervals of N20, N20+2, and N20+4. Only with median nerve stimulation MEP size increased in APB, but not FDI, at N20+8 to N20+16. These effects increased with increasing stimulation intensity. RTMS reduced MEP size but had no effect on SAI, or transcortical reflexes. Conclusions: Effects on MEP size in SAI depend on stimulus intensity and are not limited to anatomically homotopic muscles. Inhibitory rTMS modulates motor output but not the interaction of sensory inputs with the motor cortex. |
topic |
transcranial magnetic stimulation short latency afferent inhibition long-loop reflex sensori-motor integration cortical relay |
url |
http://www.sciencedirect.com/science/article/pii/S1935861X10001646 |
work_keys_str_mv |
AT mfischer shortlatencysensoryafferentinhibitionconditioningstimulusintensityrecordingsiteandeffectsof1hzrepetitivetms AT morth shortlatencysensoryafferentinhibitionconditioningstimulusintensityrecordingsiteandeffectsof1hzrepetitivetms |
_version_ |
1724217467652276224 |