Mapping of imprinted quantitative trait loci using immortalized F2 populations.

Mapping of imprinted quantitative trait loci (iQTLs) is helpful for understanding the effects of genomic imprinting on complex traits in animals and plants. At present, the experimental designs and corresponding statistical methods having been proposed for iQTL mapping are all based on temporary pop...

Full description

Bibliographic Details
Main Authors: Yongxian Wen, Weiren Wu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3968037?pdf=render
Description
Summary:Mapping of imprinted quantitative trait loci (iQTLs) is helpful for understanding the effects of genomic imprinting on complex traits in animals and plants. At present, the experimental designs and corresponding statistical methods having been proposed for iQTL mapping are all based on temporary populations including F2 and BC1, which can be used only once and suffer some other shortcomings respectively. In this paper, we propose a framework for iQTL mapping, including methods of interval mapping (IM) and composite interval mapping (CIM) based on conventional low-density genetic maps and point mapping (PM) and composite point mapping (CPM) based on ultrahigh-density genetic maps, using an immortalized F2 (imF2) population generated by random crosses between recombinant inbred lines or doubled haploid lines. We demonstrate by simulations that imF2 populations are very desirable and the proposed statistical methods (especially CIM and CPM) are very powerful for iQTL mapping, with which the imprinting effects as well as the additive and dominance effects of iQTLs can be unbiasedly estimated.
ISSN:1932-6203