Hydraulic Optimization of Double Chamber Surge Tank Using NSGA-II

A surge tank effectively reduces water hammer but experiences water level oscillations during transient processes. A double chamber surge tank is used in high head plants with appreciable variations in reservoir water levels to limit the maximum amplitudes of oscillation by increasing the volume of...

Full description

Bibliographic Details
Main Authors: Resham Dhakal, Jianxu Zhou, Sunit Palikhe, Khem Prasad Bhattarai
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/12/2/455
id doaj-0f6ff92134034df3afe2d34b1f7e66e5
record_format Article
spelling doaj-0f6ff92134034df3afe2d34b1f7e66e52020-11-25T02:03:24ZengMDPI AGWater2073-44412020-02-0112245510.3390/w12020455w12020455Hydraulic Optimization of Double Chamber Surge Tank Using NSGA-IIResham Dhakal0Jianxu Zhou1Sunit Palikhe2Khem Prasad Bhattarai3College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, Jiangsu, ChinaCollege of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, Jiangsu, ChinaCollege of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, Jiangsu, ChinaCollege of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, Jiangsu, ChinaA surge tank effectively reduces water hammer but experiences water level oscillations during transient processes. A double chamber surge tank is used in high head plants with appreciable variations in reservoir water levels to limit the maximum amplitudes of oscillation by increasing the volume of the surge tank near the extremes of oscillation. Thus, the volume of the chambers and the design of an orifice are the most important factors for controlling the water level oscillations in a double chamber surge tank. Further, maximum/minimum water level in the surge tank and damping of surge waves have conflicting behaviors. Hence, a robust optimization method is required to find the optimum volume of chambers and the diameter of the orifice of the double chamber surge tank. In this paper, the maximum upsurge, the maximum downsurge, and the damping of surge waves are considered as the objective functions for optimization. The worst condition of upsurge and downsurge is determined through 1-D numerical simulation of the hydropower system by using method of characteristics (MOC). Moreover, the sensitivity of dimensions of a double chamber surge tank is studied to find their impact on objective functions; finally, the optimum dimensions of the double chamber surge tank are found using non-dominated sorting genetic algorithm II (NSGA-II) to control the water level oscillations in the surge tank under transient processes. The volume of the optimized double chamber surge tank is only 44.53% of the total volume of the simple surge tank, and it serves as an effective limiter of maximum amplitudes of oscillations. This study substantiates how an optimized double chamber surge tank can be used in high head plants with appreciable variations in reservoir water levels.https://www.mdpi.com/2073-4441/12/2/455numerical analysisdouble chamber surge tankmethod of characteristicshydraulic transientssurge analysisnsga-iireservoir water leveloperation mode
collection DOAJ
language English
format Article
sources DOAJ
author Resham Dhakal
Jianxu Zhou
Sunit Palikhe
Khem Prasad Bhattarai
spellingShingle Resham Dhakal
Jianxu Zhou
Sunit Palikhe
Khem Prasad Bhattarai
Hydraulic Optimization of Double Chamber Surge Tank Using NSGA-II
Water
numerical analysis
double chamber surge tank
method of characteristics
hydraulic transients
surge analysis
nsga-ii
reservoir water level
operation mode
author_facet Resham Dhakal
Jianxu Zhou
Sunit Palikhe
Khem Prasad Bhattarai
author_sort Resham Dhakal
title Hydraulic Optimization of Double Chamber Surge Tank Using NSGA-II
title_short Hydraulic Optimization of Double Chamber Surge Tank Using NSGA-II
title_full Hydraulic Optimization of Double Chamber Surge Tank Using NSGA-II
title_fullStr Hydraulic Optimization of Double Chamber Surge Tank Using NSGA-II
title_full_unstemmed Hydraulic Optimization of Double Chamber Surge Tank Using NSGA-II
title_sort hydraulic optimization of double chamber surge tank using nsga-ii
publisher MDPI AG
series Water
issn 2073-4441
publishDate 2020-02-01
description A surge tank effectively reduces water hammer but experiences water level oscillations during transient processes. A double chamber surge tank is used in high head plants with appreciable variations in reservoir water levels to limit the maximum amplitudes of oscillation by increasing the volume of the surge tank near the extremes of oscillation. Thus, the volume of the chambers and the design of an orifice are the most important factors for controlling the water level oscillations in a double chamber surge tank. Further, maximum/minimum water level in the surge tank and damping of surge waves have conflicting behaviors. Hence, a robust optimization method is required to find the optimum volume of chambers and the diameter of the orifice of the double chamber surge tank. In this paper, the maximum upsurge, the maximum downsurge, and the damping of surge waves are considered as the objective functions for optimization. The worst condition of upsurge and downsurge is determined through 1-D numerical simulation of the hydropower system by using method of characteristics (MOC). Moreover, the sensitivity of dimensions of a double chamber surge tank is studied to find their impact on objective functions; finally, the optimum dimensions of the double chamber surge tank are found using non-dominated sorting genetic algorithm II (NSGA-II) to control the water level oscillations in the surge tank under transient processes. The volume of the optimized double chamber surge tank is only 44.53% of the total volume of the simple surge tank, and it serves as an effective limiter of maximum amplitudes of oscillations. This study substantiates how an optimized double chamber surge tank can be used in high head plants with appreciable variations in reservoir water levels.
topic numerical analysis
double chamber surge tank
method of characteristics
hydraulic transients
surge analysis
nsga-ii
reservoir water level
operation mode
url https://www.mdpi.com/2073-4441/12/2/455
work_keys_str_mv AT reshamdhakal hydraulicoptimizationofdoublechambersurgetankusingnsgaii
AT jianxuzhou hydraulicoptimizationofdoublechambersurgetankusingnsgaii
AT sunitpalikhe hydraulicoptimizationofdoublechambersurgetankusingnsgaii
AT khemprasadbhattarai hydraulicoptimizationofdoublechambersurgetankusingnsgaii
_version_ 1724948563149979648