On the Importance of Morphing Deformation Scheduling for Actuation Force and Energy
Morphing aircraft offer superior properties as compared to non-morphing aircraft. They can achieve this by adapting their shape depending on the requirements of various conflicting flight conditions. These shape changes are often associated with large deformations and strains, and hence dedicated mo...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2016-11-01
|
Series: | Aerospace |
Subjects: | |
Online Access: | http://www.mdpi.com/2226-4310/3/4/41 |
id |
doaj-0f85baf9340443e187cfa92d1da9768a |
---|---|
record_format |
Article |
spelling |
doaj-0f85baf9340443e187cfa92d1da9768a2020-11-24T22:05:46ZengMDPI AGAerospace2226-43102016-11-01344110.3390/aerospace3040041aerospace3040041On the Importance of Morphing Deformation Scheduling for Actuation Force and EnergyRoeland De Breuker0Noud Werter1Department of Aerospace Structures and Materials, Delft University of Technology, Kluyverweg 1, 2629HS Delft, The NetherlandsDepartment of Aerospace Structures and Materials, Delft University of Technology, Kluyverweg 1, 2629HS Delft, The NetherlandsMorphing aircraft offer superior properties as compared to non-morphing aircraft. They can achieve this by adapting their shape depending on the requirements of various conflicting flight conditions. These shape changes are often associated with large deformations and strains, and hence dedicated morphing concepts are developed to carry out the required changes in shape. Such intricate mechanisms are often heavy, which reduces, or even completely cancels, the performance increase of the morphing aircraft. Part of this weight penalty is determined by the required actuators and associated batteries, which are mainly driven by the required actuation force and energy. Two underexposed influences on the actuation force and energy are the flight condition at which morphing should take place and the order of the morphing manoeuvres, also called morphing scheduling. This paper aims at highlighting the importance of both influences by using a small Unmanned Aerial Vehicle (UAV) with different morphing mechanisms as an example. The results in this paper are generated using a morphing aircraft analysis and design code that was developed at the Delft University of Technology. The importance of the flight condition and a proper morphing schedule is demonstrated by investigating the required actuation forces for various flight conditions and morphing sequences. More importantly, the results show that there is not necessarily one optimal flight condition or morphing schedule and a tradeoff needs to be made.http://www.mdpi.com/2226-4310/3/4/41morphing aircraftactuator forceactuator energysystem level designpreliminary design |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Roeland De Breuker Noud Werter |
spellingShingle |
Roeland De Breuker Noud Werter On the Importance of Morphing Deformation Scheduling for Actuation Force and Energy Aerospace morphing aircraft actuator force actuator energy system level design preliminary design |
author_facet |
Roeland De Breuker Noud Werter |
author_sort |
Roeland De Breuker |
title |
On the Importance of Morphing Deformation Scheduling for Actuation Force and Energy |
title_short |
On the Importance of Morphing Deformation Scheduling for Actuation Force and Energy |
title_full |
On the Importance of Morphing Deformation Scheduling for Actuation Force and Energy |
title_fullStr |
On the Importance of Morphing Deformation Scheduling for Actuation Force and Energy |
title_full_unstemmed |
On the Importance of Morphing Deformation Scheduling for Actuation Force and Energy |
title_sort |
on the importance of morphing deformation scheduling for actuation force and energy |
publisher |
MDPI AG |
series |
Aerospace |
issn |
2226-4310 |
publishDate |
2016-11-01 |
description |
Morphing aircraft offer superior properties as compared to non-morphing aircraft. They can achieve this by adapting their shape depending on the requirements of various conflicting flight conditions. These shape changes are often associated with large deformations and strains, and hence dedicated morphing concepts are developed to carry out the required changes in shape. Such intricate mechanisms are often heavy, which reduces, or even completely cancels, the performance increase of the morphing aircraft. Part of this weight penalty is determined by the required actuators and associated batteries, which are mainly driven by the required actuation force and energy. Two underexposed influences on the actuation force and energy are the flight condition at which morphing should take place and the order of the morphing manoeuvres, also called morphing scheduling. This paper aims at highlighting the importance of both influences by using a small Unmanned Aerial Vehicle (UAV) with different morphing mechanisms as an example. The results in this paper are generated using a morphing aircraft analysis and design code that was developed at the Delft University of Technology. The importance of the flight condition and a proper morphing schedule is demonstrated by investigating the required actuation forces for various flight conditions and morphing sequences. More importantly, the results show that there is not necessarily one optimal flight condition or morphing schedule and a tradeoff needs to be made. |
topic |
morphing aircraft actuator force actuator energy system level design preliminary design |
url |
http://www.mdpi.com/2226-4310/3/4/41 |
work_keys_str_mv |
AT roelanddebreuker ontheimportanceofmorphingdeformationschedulingforactuationforceandenergy AT noudwerter ontheimportanceofmorphingdeformationschedulingforactuationforceandenergy |
_version_ |
1725824739325247488 |