Updating a map of sufficient conditions for the real nonnegative inverse eigenvalue problem

The real nonnegative inverse eigenvalue problem (RNIEP) asks for necessary and sufficient conditions in order that a list of real numbers be the spectrum of a nonnegative real matrix. A number of sufficient conditions for the existence of such a matrix are known. The authors gave in [11] a map of su...

Full description

Bibliographic Details
Main Authors: Marijuán C., Pisonero M., Soto Ricardo L.
Format: Article
Language:English
Published: De Gruyter 2019-12-01
Series:Special Matrices
Subjects:
Online Access:https://doi.org/10.1515/spma-2019-0018
id doaj-0f95f7cb5e9f4c53863e8ab4735b9031
record_format Article
spelling doaj-0f95f7cb5e9f4c53863e8ab4735b90312021-10-02T18:54:20ZengDe GruyterSpecial Matrices2300-74512019-12-017124625610.1515/spma-2019-0018spma-2019-0018Updating a map of sufficient conditions for the real nonnegative inverse eigenvalue problemMarijuán C.0Pisonero M.1Soto Ricardo L.2Dpto. Matemática Aplicada, E.T.S.I. Informática, Paseo de Belén 15, 47011-Valladolid, SpainDpto. Matemática Aplicada, E.T.S. de Arquitectura, Avenida de Salamanca 18, 47014-Valladolid, SpainDpto. de Matemáticas, Universidad Católica del Norte, Antofagasta, ChileThe real nonnegative inverse eigenvalue problem (RNIEP) asks for necessary and sufficient conditions in order that a list of real numbers be the spectrum of a nonnegative real matrix. A number of sufficient conditions for the existence of such a matrix are known. The authors gave in [11] a map of sufficient conditions establishing inclusion relations or independency relations between them. Since then new sufficient conditions for the RNIEP have appeared. In this paper we complete and update the map given in [11].https://doi.org/10.1515/spma-2019-0018real nonnegative inverse eigenvalue problemsufficient conditionsnonnegative matrices15a2915a1815b51
collection DOAJ
language English
format Article
sources DOAJ
author Marijuán C.
Pisonero M.
Soto Ricardo L.
spellingShingle Marijuán C.
Pisonero M.
Soto Ricardo L.
Updating a map of sufficient conditions for the real nonnegative inverse eigenvalue problem
Special Matrices
real nonnegative inverse eigenvalue problem
sufficient conditions
nonnegative matrices
15a29
15a18
15b51
author_facet Marijuán C.
Pisonero M.
Soto Ricardo L.
author_sort Marijuán C.
title Updating a map of sufficient conditions for the real nonnegative inverse eigenvalue problem
title_short Updating a map of sufficient conditions for the real nonnegative inverse eigenvalue problem
title_full Updating a map of sufficient conditions for the real nonnegative inverse eigenvalue problem
title_fullStr Updating a map of sufficient conditions for the real nonnegative inverse eigenvalue problem
title_full_unstemmed Updating a map of sufficient conditions for the real nonnegative inverse eigenvalue problem
title_sort updating a map of sufficient conditions for the real nonnegative inverse eigenvalue problem
publisher De Gruyter
series Special Matrices
issn 2300-7451
publishDate 2019-12-01
description The real nonnegative inverse eigenvalue problem (RNIEP) asks for necessary and sufficient conditions in order that a list of real numbers be the spectrum of a nonnegative real matrix. A number of sufficient conditions for the existence of such a matrix are known. The authors gave in [11] a map of sufficient conditions establishing inclusion relations or independency relations between them. Since then new sufficient conditions for the RNIEP have appeared. In this paper we complete and update the map given in [11].
topic real nonnegative inverse eigenvalue problem
sufficient conditions
nonnegative matrices
15a29
15a18
15b51
url https://doi.org/10.1515/spma-2019-0018
work_keys_str_mv AT marijuanc updatingamapofsufficientconditionsfortherealnonnegativeinverseeigenvalueproblem
AT pisonerom updatingamapofsufficientconditionsfortherealnonnegativeinverseeigenvalueproblem
AT sotoricardol updatingamapofsufficientconditionsfortherealnonnegativeinverseeigenvalueproblem
_version_ 1716848545703657472