Controlled nitric oxide production via O(<sup>1</sup>D)  + N<sub>2</sub>O reactions for use in oxidation flow reactor studies

Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O<sub>3</sub>) is photolyzed at 254 nm to produce O(<sup>1</sup>D) radicals, which rea...

Full description

Bibliographic Details
Main Authors: A. Lambe, P. Massoli, X. Zhang, M. Canagaratna, J. Nowak, C. Daube, C. Yan, W. Nie, T. Onasch, J. Jayne, C. Kolb, P. Davidovits, D. Worsnop, W. Brune
Format: Article
Language:English
Published: Copernicus Publications 2017-06-01
Series:Atmospheric Measurement Techniques
Online Access:http://www.atmos-meas-tech.net/10/2283/2017/amt-10-2283-2017.pdf
id doaj-0f9b4a533b504e76812b159c6b13de8e
record_format Article
spelling doaj-0f9b4a533b504e76812b159c6b13de8e2020-11-24T22:01:19ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482017-06-01102283229810.5194/amt-10-2283-2017Controlled nitric oxide production via O(<sup>1</sup>D)  + N<sub>2</sub>O reactions for use in oxidation flow reactor studiesA. Lambe0A. Lambe1P. Massoli2X. Zhang3X. Zhang4M. Canagaratna5J. Nowak6J. Nowak7C. Daube8C. Yan9W. Nie10W. Nie11T. Onasch12T. Onasch13J. Jayne14C. Kolb15P. Davidovits16D. Worsnop17D. Worsnop18W. Brune19Aerodyne Research, Inc., Billerica, Massachusetts, USAChemistry Department, Boston College, Chestnut Hill, Massachusetts, USAAerodyne Research, Inc., Billerica, Massachusetts, USAAerodyne Research, Inc., Billerica, Massachusetts, USACurrent address: Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USAAerodyne Research, Inc., Billerica, Massachusetts, USAAerodyne Research, Inc., Billerica, Massachusetts, USACurrent address: Chemistry and Dynamics Branch, NASA Langley Research Center, Hampton, Virginia, USAAerodyne Research, Inc., Billerica, Massachusetts, USAPhysics Department, University of Helsinki, Helsinki, FinlandJoint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, ChinaPhysics Department, University of Helsinki, Helsinki, FinlandAerodyne Research, Inc., Billerica, Massachusetts, USAChemistry Department, Boston College, Chestnut Hill, Massachusetts, USAAerodyne Research, Inc., Billerica, Massachusetts, USAAerodyne Research, Inc., Billerica, Massachusetts, USAChemistry Department, Boston College, Chestnut Hill, Massachusetts, USAAerodyne Research, Inc., Billerica, Massachusetts, USAPhysics Department, University of Helsinki, Helsinki, FinlandDepartment of Meteorology and Atmospheric Sciences, The Pennsylvania State University, University Park, Pennsylvania, USAOxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O<sub>3</sub>) is photolyzed at 254 nm to produce O(<sup>1</sup>D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O<sub>3</sub> hinders the ability of oxidation flow reactors to simulate NO<sub><i>x</i></sub>-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NO<sub><i>x</i></sub> (NO + NO<sub>2</sub>) to nitric acid (HNO<sub>3</sub>), making it impossible to sustain NO<sub><i>x</i></sub> at levels that are sufficient to compete with hydroperoxy (HO<sub>2</sub>) radicals as a sink for organic peroxy (RO<sub>2</sub>) radicals. We developed a new method that is well suited to the characterization of NO<sub><i>x</i></sub>-dependent SOA formation pathways in oxidation flow reactors. NO and NO<sub>2</sub> are produced via the reaction O(<sup>1</sup>D) + N<sub>2</sub>O  →  2NO, followed by the reaction NO + O<sub>3</sub>  →  NO<sub>2</sub> + O<sub>2</sub>. Laboratory measurements coupled with photochemical model simulations suggest that O(<sup>1</sup>D) + N<sub>2</sub>O reactions can be used to systematically vary the relative branching ratio of RO<sub>2</sub> + NO reactions relative to RO<sub>2</sub> + HO<sub>2</sub> and/or RO<sub>2</sub> + RO<sub>2</sub> reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO<sub>3</sub><sup>−</sup>) reagent ion to detect gas-phase oxidation products of isoprene and <i>α</i>-pinene previously observed in NO<sub><i>x</i></sub>-influenced environments and in laboratory chamber experiments.http://www.atmos-meas-tech.net/10/2283/2017/amt-10-2283-2017.pdf
collection DOAJ
language English
format Article
sources DOAJ
author A. Lambe
A. Lambe
P. Massoli
X. Zhang
X. Zhang
M. Canagaratna
J. Nowak
J. Nowak
C. Daube
C. Yan
W. Nie
W. Nie
T. Onasch
T. Onasch
J. Jayne
C. Kolb
P. Davidovits
D. Worsnop
D. Worsnop
W. Brune
spellingShingle A. Lambe
A. Lambe
P. Massoli
X. Zhang
X. Zhang
M. Canagaratna
J. Nowak
J. Nowak
C. Daube
C. Yan
W. Nie
W. Nie
T. Onasch
T. Onasch
J. Jayne
C. Kolb
P. Davidovits
D. Worsnop
D. Worsnop
W. Brune
Controlled nitric oxide production via O(<sup>1</sup>D)  + N<sub>2</sub>O reactions for use in oxidation flow reactor studies
Atmospheric Measurement Techniques
author_facet A. Lambe
A. Lambe
P. Massoli
X. Zhang
X. Zhang
M. Canagaratna
J. Nowak
J. Nowak
C. Daube
C. Yan
W. Nie
W. Nie
T. Onasch
T. Onasch
J. Jayne
C. Kolb
P. Davidovits
D. Worsnop
D. Worsnop
W. Brune
author_sort A. Lambe
title Controlled nitric oxide production via O(<sup>1</sup>D)  + N<sub>2</sub>O reactions for use in oxidation flow reactor studies
title_short Controlled nitric oxide production via O(<sup>1</sup>D)  + N<sub>2</sub>O reactions for use in oxidation flow reactor studies
title_full Controlled nitric oxide production via O(<sup>1</sup>D)  + N<sub>2</sub>O reactions for use in oxidation flow reactor studies
title_fullStr Controlled nitric oxide production via O(<sup>1</sup>D)  + N<sub>2</sub>O reactions for use in oxidation flow reactor studies
title_full_unstemmed Controlled nitric oxide production via O(<sup>1</sup>D)  + N<sub>2</sub>O reactions for use in oxidation flow reactor studies
title_sort controlled nitric oxide production via o(<sup>1</sup>d)  + n<sub>2</sub>o reactions for use in oxidation flow reactor studies
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2017-06-01
description Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O<sub>3</sub>) is photolyzed at 254 nm to produce O(<sup>1</sup>D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O<sub>3</sub> hinders the ability of oxidation flow reactors to simulate NO<sub><i>x</i></sub>-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NO<sub><i>x</i></sub> (NO + NO<sub>2</sub>) to nitric acid (HNO<sub>3</sub>), making it impossible to sustain NO<sub><i>x</i></sub> at levels that are sufficient to compete with hydroperoxy (HO<sub>2</sub>) radicals as a sink for organic peroxy (RO<sub>2</sub>) radicals. We developed a new method that is well suited to the characterization of NO<sub><i>x</i></sub>-dependent SOA formation pathways in oxidation flow reactors. NO and NO<sub>2</sub> are produced via the reaction O(<sup>1</sup>D) + N<sub>2</sub>O  →  2NO, followed by the reaction NO + O<sub>3</sub>  →  NO<sub>2</sub> + O<sub>2</sub>. Laboratory measurements coupled with photochemical model simulations suggest that O(<sup>1</sup>D) + N<sub>2</sub>O reactions can be used to systematically vary the relative branching ratio of RO<sub>2</sub> + NO reactions relative to RO<sub>2</sub> + HO<sub>2</sub> and/or RO<sub>2</sub> + RO<sub>2</sub> reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO<sub>3</sub><sup>−</sup>) reagent ion to detect gas-phase oxidation products of isoprene and <i>α</i>-pinene previously observed in NO<sub><i>x</i></sub>-influenced environments and in laboratory chamber experiments.
url http://www.atmos-meas-tech.net/10/2283/2017/amt-10-2283-2017.pdf
work_keys_str_mv AT alambe controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT alambe controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT pmassoli controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT xzhang controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT xzhang controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT mcanagaratna controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT jnowak controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT jnowak controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT cdaube controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT cyan controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT wnie controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT wnie controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT tonasch controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT tonasch controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT jjayne controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT ckolb controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT pdavidovits controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT dworsnop controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT dworsnop controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
AT wbrune controllednitricoxideproductionviaosup1supdnsub2suboreactionsforuseinoxidationflowreactorstudies
_version_ 1725840205699612672